TEMP2000 SERIES

Installation Manual (Programmable controller)

It is a dual/single loop programmable controller which equips with the general control, heating and cooling function by supporting high definition TFT-LCD touch screen and SD card.

http://www.samwontech.com Being the controller market leader in the 21st century with the best technology

Copyright

Copyright© 2012 Samwon technology Co., Ltd This installation manual is a work protected by the copyright law.

A part or entire of this manual shall not be copied, air sent, distributed, translated or changed into the form to be read by electronic media or machine without prior written consent of Samwon technology Co., Ltd.

This manual is commonly used for TEMP2000 Series.

Contents

01. Safety Instruction (Cautions)	4
1–1, Product check ······	
1–2. Exterior and how to install ······	
1–3. Wiring · · · · · · · · 1	
1–4. Display function and name · · · · · · · · · · · · · · · · · · ·	
1–5. Control part LED ····· 2	
02. System parameter setting ······2	
2-1. Setting button operation ····· 2	2
2–2. System parameter setting screen ····· 2	3
2-3. System parameter setting sequence ······2	4
03. Sensor input setting ·····2	
3–1. Sensor input setting · · · · · · · · · · · · · · · · · · ·	
3–2. Sectional calibrating input setting · · · · · · · · · · · · · · · · · · ·	8
04. Control & Transmitting output ······ 44	3
4-1. General control output setting	3
4–2. Heating · Cooling control output setting · · · · · · · · · · · · · · · 5	0
4–3. Transmitting output setting screen · · · · · · · · · · · · · · · · · ·	4
05. Inner signal (IS) ·····5	7
5–1. Inner signal setting ····· 5	7
5–2. Inner signal operation · · · · · · · · · · · · · · · · · · ·	9
06. ON/OFF signal	3
6–1. ON/OFF signal setting	3
6-2, ON/OFF signal operation	

07. Logic signal ·····69	
7–1, Logic signal setting ····· 69)
7–2, Logic signal operation · · · · · · · · · · · · · · · · · · ·	
08. Alarm signal	
8–1. Alarm signal setting · · · · · · · · · · · · · · · · · · ·	5
8–2, Alarm signal operation · · · · · · · · · · · · · · · · · · ·	
09. PID Group	
9–1. PID application range setting screen ····· 87	7
9–2. General PID application range setting screen · · · · · · · · · · · 91	1
9–3, General PID group setting screen · · · · · · · · · · · · · · · · · ·	3
9–4. Heating \cdot Cooling PID application range setting screen $\cdots \cdots $ 95	Ĵ
9–5. Heating · Cooling PID group setting screen · · · · · · · · · · · · · · · 97	7
10. Setting communication environment 101	
10–1,RS232C/485 Communication setting ·····101	1
10-2. Communication environment setting screen · · · · · · · · · · · · · · · · · ·	2
10-3, SYNC Communication environment setting screen ·······10/	1
10-4. Ethernet communication environment setting screen ······108	
11. DO relay output · · · · · 110	
11–1. Relay No. and parameter setting ······110)
11–2, UP, SOAK, DOWN signal operation	
12. DI function and Operation 128	
12–1. DI Operation setting ·····128	3
12–2. Di error name · · · · · · · · · · · · · · · · · · ·	
12–3. DI error creation screen	
13. User screen 143	
13–1. User screen setting ·····143	3
13–2, JPG & BMP file making method · · · · · · · · · · · · · · · · · · ·	ò
13–3. Operation of user screen ·····150	
14. System initial setting 154	
14–1. Basic screen display setting · · · · · · · · · · · · · · · · · · ·	1
14–2. State display lamp setting · · · · · · · · · · · · · · · · · · ·	ò

01. Cautions (Instructions) for safety

:....: Thank you for your choice of our programmable controller (TEMP2000 series). This manual describes the method of installation of the product.

Cautions in this instruction manual

- Please deliver for the end user to possess always and keep it in the place accessible at any time.
- Use the product after full understanding of this installation manual.
- This installation manual does not warrant any other things because it is a description of the details for the function.
- A part or whole of this manual shall not be edited or copied randomly.
- The descriptions in this manual may be changed randomly without pre notice or warning.
- Even though this manual was made with elaboration, it will be appreciated if you inform to the purchasing point (Dealer shop and etc) or sales team in our company in case of deficiency, mistake or omission in the contents.

Cautions for the safety and modification (Change) of the product

- Please use this product after full understanding on the safety cautions in this manual for the protection and safety for this product and the system connected to this system.
- Our company is not responsible to the damages occurred by using or handling or unattended using not relying on this installation manual.
- Please install at the outside of this product when the additional protection and safety circuit is installed separately for the protection and safety for this product and the system connected to this system.
- The internal modification (Change) and addition to this product are prohibited.
- Do not disassemble, repair and modify of this product because it becomes the reasons for electric shock, fire and malfunction.
- In case of changing the part or the consumables of this product, please contact to the sales department of our company.
- Do not contact to the moisture with this product. It may cause the failure on this product,
- Do not apply the strong impact on this product. It may cause the damage and failure on this product.

With regard to the exemption for the responsibility of this product

- We are not responsible for any warranty on this product besides the defined cases in the quality assurance condition of our company.
- We are not responsible for the direct or indirect damages on the user of any third party due to the not expectable defect or the natural disaster in use of this product.

With regard to the quality assurance condition of this product

- The warranty period shall be one year from the purchasing of this product. Free of charge repair is available only for the cases of out of order occurred from normal use conditions,
- The repair due to the out of order occurred after the warranty period shall be repaired at the actual cost according to the defined condition by our company.
- The out of order occurred within the warranty period shall be repaired at the actual cost for the following cases in spite of within the warranty period, (1) Out of order due to the mistake or fault of the user (Ex: Initialization by losing the password and etc.)

(2) Out of order due to the natural disaster (Ex: Fire and flood and etc) (3) Out of order due to the movement of product after installation. (4) Out of order due to the random disassemble, change or damage on the product. (5) Out of order due to the electric power instability (6) Others

Please contact to the purchasing points or sales part of our company when after sales service is necessary because of the failure on the product,

Symbol marks for safety

(A) It means the "Handle with care" or "Cautions" In case of violation of this point, it may cause the death, severe injury or the extreme damage on the product.

 Product: It is marked on the points to be acknowledged certainly to protect the human body and device.

Instruction manual: It describes the cautions to prevent the cases of endangered situation on the life and body of the user due to the electric shock and so on.

(B) It means"Ground terminal"

• Make the earth with the ground in case of product installation and controlling the product.

(C) It means the "supplementary explanation"

 It describes the points to supplement the explanation.

 (D) It describes the "references"
 It describes the information and pages of reference to be referred. ^{Part}**01**

Safety Instruction (Cautions)

1—1	Product Check · · · · · · ·			• • •					• •				4
1–2	Exterior and how to install								• •				6
1–3	Wiring · · · · · · · · · · · · · · · · · · ·								• •				11
1–4	Display function and name								• •				20
1–5	Control part LED												21

01. Safety Instruction (Cautions)

1-1. Product check

• When the product is purchased, please check the damaged on the product by checking the exterior of the product.

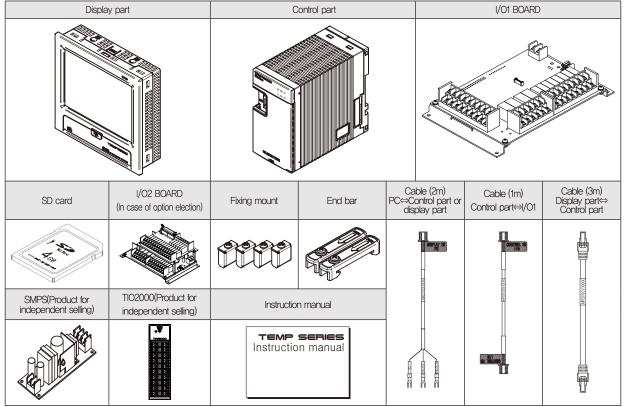
(1) Checking the specification of the ordered product

- Check whether the purchased product is identical with the ordered specification.
- How to check: Check the model name specification code marked on the right of the packing box and on the left label of product case,

		TE	EMP2 * * 0 - * * / ① ② ④ - ③ ④	*	/ * / * ⑥ 7		
1	Display part LCD size 5 : 5.7Inch (IP65 Certification) 7 : 7.5Inch	3	Control method 0 : General control 1 : Heating · Cooling control	5	SD card SD : SD card	7	SYNC operation - : None SC: SYNC operation
2	Control channel 0 : Single loop (1CH Control) 2 : Dual loop (2CH Control)	4	I/O Board 0 : I/O1 (Relay 12 points +DI 16 points) 1 : I/O2 (Relay 32 points + DI 16 points)	6	Ethernet communication 	n	

(2) How to treat the damaged parts

 In case of product damage after checking the exterior of the product as shown in the above or the accessories are missed, please contact to the purchasing point or the sales part of our company.



Period of exchange for the part of expiration date

- Please check the corresponding replacing period as shown below and replace prior to the expiration if it is necessary.
- Only parts that meet the following specifications should be used.
 - Relay JQ1P-24V DC, ALD24V Equivalent : Under 300,000 times of ON/OFF
 - Battery CR2030 3V Equivalent : Under 200,000 hours
- The exchange of the product with expiration date, please contact to the purchasing point (Dealer shop) or the sales part of our company.

(3) Check the package

• Check whether the following contents are included.

SVIMUON

01. Safety instruction (Cautions)

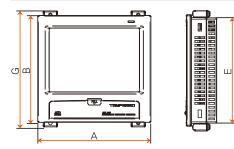
1-2. Exterior and how to install

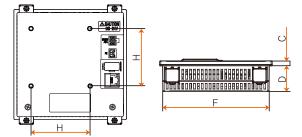
(1)Installation location and environment

Cautions for the installation location and environment

- This product is an industrial product.
- Please manipulate in electricity on state at the installation of this product on the panel because of the electric shock risk. (Caution for electric shock)
- Do not install the product in the following location or environment.
 - A place for contacting the terminal by the human without recognition
 - A place directly exposed for mechanical vibration or impact
 - A place exposed for the corrosive gas or flammable gas
 - A place of temperature fluctuation
 - A place of extremely high (Over 50 $^\circ C$) and low (Under 10 $^\circ C$) temperature
 - A place exposed to the direct sunlight
 - A place influenced with electromagnetic wave
 - A place of moisture (A place with more than 85% of humidity)
 - A place where there are the flammable stuffs at the surrounding
 - A place of dusty and salty
 - A place of receiving the ultra violet light
- Do not use sharp thing or excessive pressure to manipulate the touch screen.
- Please pay attention to the handling of the product because the product is weak to the organic solvent (Chemical substances) as the exterior of the product is made of plastic. (Do not contact the front side of the product to the organic solvent especially.)
- Even though the case of this product is made of non flammable material such as ABS/PC, but do not install in the place where there are the stuffs of easy flammability.

Installation Precautions

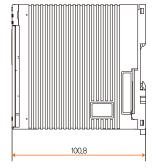

- Don't put the device or the wiring which cause the noise near to this product.
- Use the product in 10~50°C, in 20~90% RH (It shall not be dewing.) Don't put the heat radiant device closely.
- Don't install the product in declined position.
- Keep the product in -5~70 $^{\circ}$ C (It shall not be dewing.). Especially, use after full warming up (Switch on) when you use the product under 10 $^{\circ}$ C.
- The wiring work shall be made after switching off electric power on the machine.
- This product operates in 24V DC, 22V max without special manipulation. There is a risk of the electric shock or fire when the electric power other than the specification.
- Don't work with wet hands. It has the risk of electric shock.
- Follow up the basic cautions to reduce risk of fire, electric shock and injury during using.
- The installation and the use shall be made according to the specified methods in instruction manual.
- Refer to the installation procedure regarding to the description for ground. However, do not make the ground on the water supply pipe, gas pipe, phone line and lightening rod.


There is a risk of explosion and fire.

- Do not switch on before finishing the connection of the devices. It may cause the failure.
- Do not close the heat radiating hole on this product. It may cause the failure.
- This product can be used under the following environmental conditions.
- Altitude up to 2000m
- Pollution degree II
- The level of excessive voltage protection category II

(2) External dimension (Unit : mm)

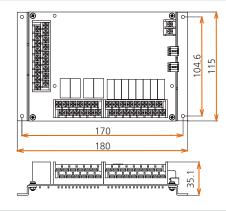
External dimension of display part for each model

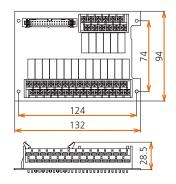


∦ Unit∶mm

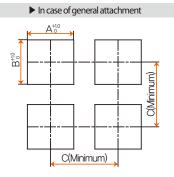
Model name	А	В	С	D	E	F	G	Н
TEMP25*0	144	144	6.2	33.5	136.5	136.5	156	75
TEMP27 * 0	203	180	6.8	38.2	172.5	195.5	192	75

External dimension of control part

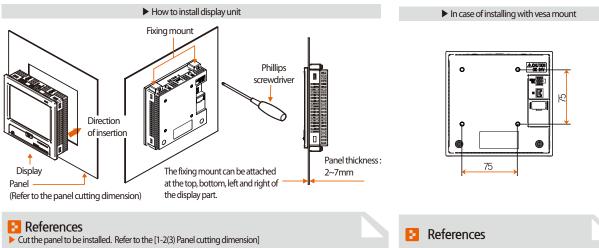



IVS

NOION


I/O1 board external dimension

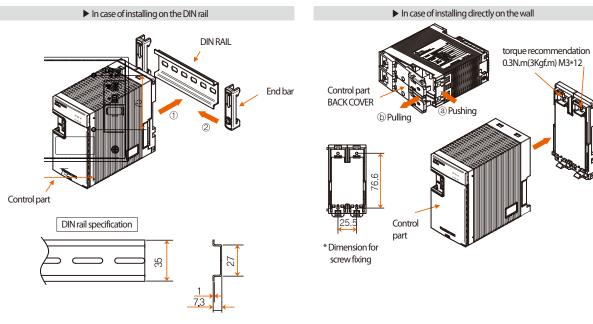
► I/O2 board external dimension


(3) Panel cutting dimension

※ Panel cutting dime	Unit:mm		
Model name	А	В	C
TEMP25*0	137.5	137.5	250
TEMP27 * 0	196	173	308.5

(4) How to attach on the panel mount

*How to install the product



- ▶ Insert into the hole from the rear side of the product as shown in the above figure.
- Fix this product using in fixing mount at the upper/lower part of the product (As shown in the figure) Apply 0.2Nm~0.4Nm of torque in case of assembling the fixing mount (Use the Phillips driver)

- ▶ The dimension of vesa (75 * 75) is same in any product.
- ▶ Apply M4 * 4L~6L in case of assembling the bolt on the vesa hole.

SUMMON

* How to install the control part

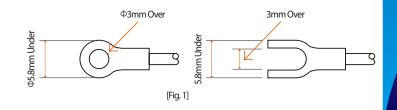
References

- ▶ Install the control part on DIN rail.
- ▶ Fix the control part with end bar from both sides.

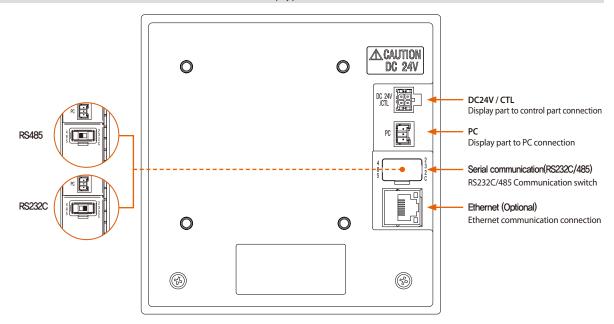
References

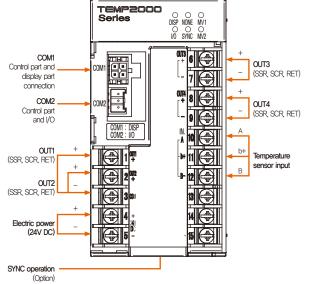
- Separate back cover by pulling part (b) on the back cover while (a) part on the control panel is pressed.
- ▶ Fix the back cover of control part on the wall with screw.
- > Assemble the main body of control part on the back cover.

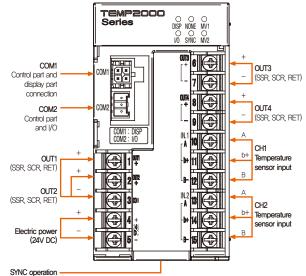
SAMAON


1-3. Wiring

- Make the wiring after checking whether the wiring cable is applied for current with tester by switching off the main electric power in every supplied instrument.
- Never contact to the terminal because of the risk of electric shock during application of the current (Electric power on).
- Make the wiring after switching off the main electric power certainly.

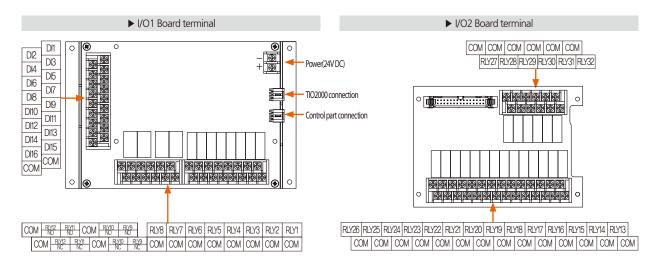

(1) How to make the wiring


- Recommended specification for electric cable : Vinyl insulated electric cable KSC3304 0.9~2.0mm2
- Recommended specification for terminal: Use the pressed terminal with insulation sleeve which is proper to the M3 screw as shown in [Fig. 1].
- Source of noise
 - (A) Relay and contact point
 - (B) Solenoid coil and solenoid valve
 - (C) Electric power line
 - (D) Induced load
 - (E) Inverter
 - (F) Commutates in motor
 - (G) SCR for controlling the phase angle
 - (H) Wireless communication device
 - (I) Welding machine
 - (J) High pressure ignition device and etc
- Solution for noise
 - (A) Make the wiring with caution for the following points from the noise creation source.
 - (B) Make the wiring for the input circuit with placing the gap from the power circuit and ground circuit.
 - (C) Use the shield line for the noise from the electrostatic induction.
 - (D) Connect the shield line to the ground terminal according to the necessity not to make the 2 point ground.
 - (E) Make the wiring in tight twisting for the noise from the electric induction.

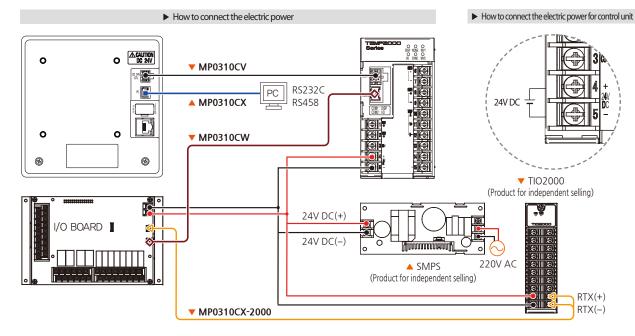


(2) Terminal layout

Display part terminal



SUIV

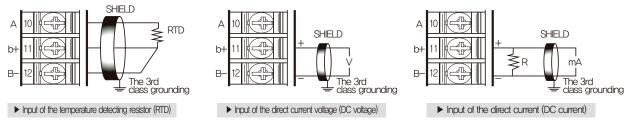

NON

Control part	2*20 set	ting range	2*00 set	ting range				
terminal	General control	Heating · Cooling control	General control	Heating · Cooling control				
OUT1	Channel1 – SSR, SCR, RET	Channel1(Heating) – SSR, SCR, RET	SSR, SCR, RET	Heating SSR, SCR, RET				
OUT2	Channel1 – SSR, SCR, RET	Channel1(Cooling) – SSR, SCR, RET	SSR, SCR, RET	Cooling SSR, SCR, RET				
OUT3	Channel2 – SSR, SCR, RET	Channel2(Heating) – SSR, SCR, RET	SSR, SCR, RET	Heating SSR, SCR, RET				
OUT4	Channel2 – SSR, SCR, RET	Channel2(Cooling) - SSR, SCR, RET	SSR, SCR, RET	Cooling SSR, SCR, RET				

(3) Electric power circuit

• Use the cable with equivalent or above the vinyl insulated cable (KSC3340) or electric cable with vinyl insulated cable.

References


▶ Use core(TDK: ZCAT3035-1330) for each unit power (24V DC) supply.

When wiring the MP0310CV / CW / CX cable, wire the cable so that no more than 0.5kgf of force is applied to the cable. Pulling with excessive force may result in connection failure or disconnection.

① Connection of measurement input (Analog input)

- Switch "OFF" the power of TEMP2000 main body and external power supply certainly for connecting the measurement input because of electric shock risk.
- Use the shield attached input cable and the shield shall be grounded by one point,
- . Connect the signal line for measurement input by placing the gap between with electric power cable or ground circuit,
- Use the electric cable with less resistance and no difference in resistance.

SVINKION

Receiver

≶

Receiver

(Recorder and etc)

Control

terminal

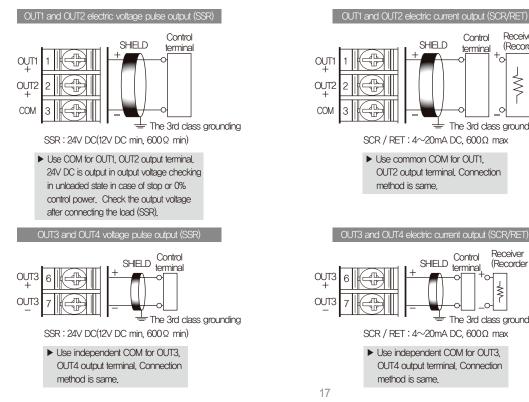
+ The 3rd class grounding

SHIELD

(Recorder and etc)

Control

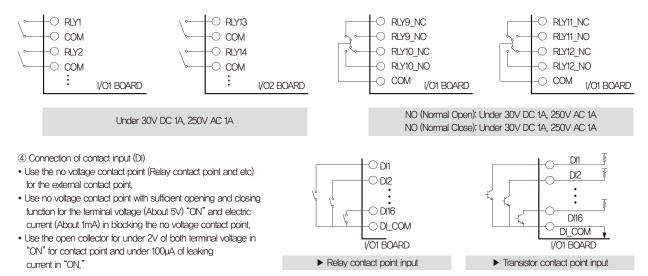
terminal +~


+ The 3rd class grounding

SHIELD

01. Safety instruction (Cautions)

(2) Control output connection (Analog output)

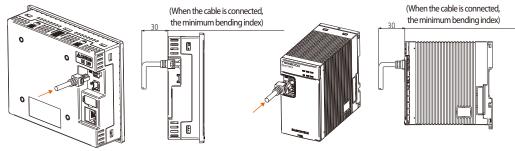

- Connect by using caution for output polarity. The misconnection becomes a reason for failure in main body.
- Use the shield attached output cable and the shield shall be grounded by one point.
- The COM(-) terminal of OUT1 and OUT2 is used for common terminal of COM(-) regardless of the type.

③ Connection for external contact point output

• Switch "OFF" the power of TEMP2000 main body and external power supply certainly for connecting the measurement input because of electric shock risk.

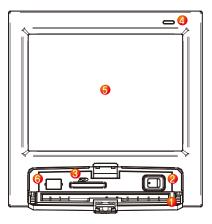
• Contact point output: Under 30V DC 1A, 250V AC 1A for Normal and Open

(5) Use of sub relay


- "ON/OFF the load by using the sub relay when the resistance load exceeds the relay specification of the product.
- Constitute the spark removing surge suppressor and insert parallel with the CR filter (In case of using AC) or diode (In case of using DC,) certainly because the use of the same inductance (L) load such as sub relay or solenoid valve becomes a reason for mal function or failure in the relay.
- CR filter recommendation
 - Sungho Electronics Co., Ltd

: BSE104120 (20 25V (0.1μ+120Ω) : HN2EAC

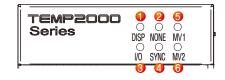
- Hana Parts Co., Ltd
 Songmi Electric Equipment Co., Ltd
- Jiwol Electric Equipment Manufacturing Co., Ltd
- Shinyoung Communication Industry Co., Ltd
- : CR unit 953, 955 : SKV, SKVB etc
- : CR–CFS, CR–U etc



6 Display/control unit cable connection

SANKION

1-4. Display function and name



0	
U	insertion part when the cover is open.)
1	Cover (The user can find the electric power switch and SD card

- (2) TEMP2520/2720 display part electric power switch
- ③ SD card insertion part (Use for SD card option)
- ④ Lamp (Lighting in "OFF" of backlight/Run: Green, Stop: Red)
- ⑤ Screen display part
- 6 Manufacturer service port (Do not use.)

1-5. Control part LED

• The lamps for displaying the state of each part

1	Communication state display lamp for display part and control part (The lamp flashes in normal communication,)
2	Unused
3	Communication state display lamp between the control part and I/O1 board (The lamp flashes in normal communication,)
4	SYNC communication state display lamp (The lamp flashes in normal communication.)
5	Channel 1 control output display (The lamp flashes depending on the control output of channel 1.)
6	Channel 2 control output display lamp (The lamp flashes depending on the control output of channel 2.)

System parameter setting

2-1 Setting button operation ·····23
2-2 System parameter setting screen ·····24
2-3 System parameter setting sequence

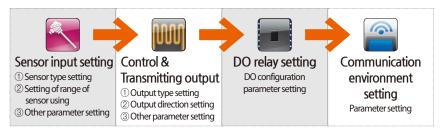
02. System parameter setting

2-1. Setting button operation

Button type	Button operation
	It is used for inputting the general numbers and name.
	It is used for selection for one out of many types,
۵ ک	It is used for selection for one out of more than 2 parameter setting, (ON/OFF/inactive state)
✓ ✓	It is used for selection of Y/N for the corresponding parameter. (ON/OFF/Inactive state)
← →	It is used for screen conversion,
	It is used for increasing or decreasing of the page within the screen.
• •	It is used for page conversion by increasing or decreasing of time axis the page on the same screen,
CH1 CH2	The explanation for the channel corresponds only to TEMP2*20 (TEMP2*20 series not support this setting)

2-2. System parameter setting screen

- This product is a programmable controller designed in dialogue type touch screen for easy use.
- Please refer to the [1-1 Basic operation flow chart] in [operation manual].
- When ① and ② on the [Fig. 2–1 Main screen] are pressed sequentially, the password box to move to the system parameter setting screen is activated.
- When the password in input in [Fig. 2–2 password input screen] is input, it is converted to [Fig. 2–3 system parameter setting screen]
 - The password in case of outgoing from the factory is set in the beginning.
 - Set the password in [14-1 Basic screen display setting] certainly at the necessity of blocking the access of the general user.



Symbol	ltem	Function
	INPUT SET	Setting of parameter related with the type of input sensor and sensor input [Refer to 3-1]
	OUTPUT SET	Setting of parameter related with the output type and output [Refer to 4-1]
	INNER SIGNAL	Setting of parameter related with inner signal [Refer to 5-1]
	ON/OFF SIGNAL	Setting of parameter related with on/off signal [Refer to 6-1]
	LOGICAL SIGNAL	Setting of parameter related with logical signal [Refer to 7-1]
	ALARM SIGNAL	Setting of parameter related with alarm signal [Refer to 8-1]

Symbol	ltem	Function
0.0 1.0	PID GROUP	Setting of parameter related with PID [Refer to 9-1]
	Communication	Setting of parameter related with communication [Refer to 10-1]
	DO CONFIG	Setting of parameter related with I/O board relay output signal [Refer to 11-1]
\bigcirc	DI CONFIG	Setting of parameter related with the external contact input signals[Refer to 12-1]
	PICTURES VIEW	Setting of parameter related with user setting screen [Refer to 13-1]
	INITIAL SETTING	Setting of parameter related with the basic setting for screen configuration [Refer to 14-1]

2-3. System parameter setting sequence

• The sequence of parameter setting in priority for product installation is as follows.

References

- The device may be mal operated in case of changing the setting data is changed into wrong data inside the system setting screen.
- User screen setting: It is activated with SD card option and inactivated without option.

Sensor input setting

3–1 Sensor input setting ······	 	 	 • •	 	 	 • •	 • •	 	 	.2	28
3-2 Sectional calibrating input setting	 	 	 	 	 	 	 	 	 	. 3	39

Sensor input flow chart

夫 🗲 🗲 Flow chart

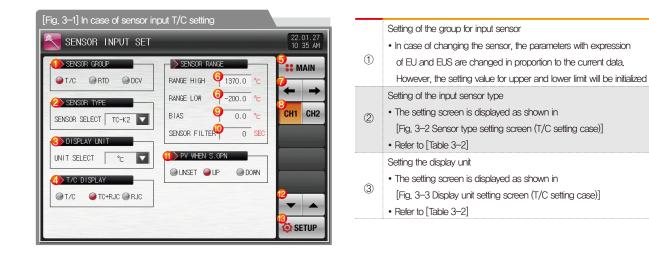
SENSOR INPUT SET					01.27 35 AM	
SENSOR GROUP	SENSOR RANG	E		:: N	IAIN	
T/C ORTD ODV	RANGE HIGH	1370.0	°c		-	
SENSOR TYPE	RANGE LOW	-200.0	°c	+	-	
SENSOR SELECT TC-K2	BIAS	0.0	°C	CH1	CH2	
DISPLAY UNIT	SENSOR FILTER	0	SEC			2
UNIT SELECT C	PV WHEN S.C		OHN			
T/C DISPLAY				-		
				Ø SI	TUP	

[Fig. 3–1] In case of setting for sensor input T/C

SP LIMIT SETTING	22.01.27 03 42 PM
	# MAIN
LINIT HIGH 100.0 KB	← →
	CH1 CH2
	T
	😟 SETUP

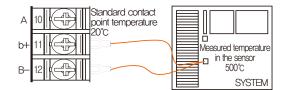
[Fig. 3–15] SP limit setting screen

[Fig. 3–16] Screen for sensor input calibration for each range

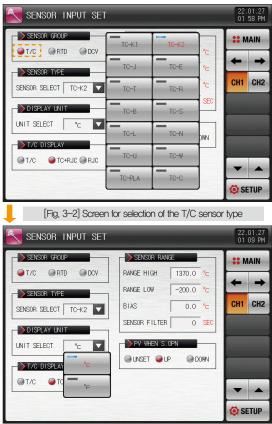

03. Sensor input setting

Explanation with CHI CHI CHI CONTRESPONDED TO TEMP2*20 ONLY (TEMP2*00 series not support this setting)

3-1. Sensor input setting


(1) Sensor input screen 1

- It selects the input (T/C, RTD, DCV) sensor for channel 1 and 2 input.
- The sensors shall be set firstly certainly because when the sensor selected, the parameters will be initialized.
- During Running, the sensor group, sensor type, upper limit range and lower limit, display unit, upper and lower limit of the scale shall not be changed.
- The following screen is the explanation for the channel 1 and the screen of channel 2 is same with the channel 1.


	Refer to the setting [Table 3–1] for Y/N for standard contact point
	calibration setting for the sensor connected terminal.
	 Selection of Y/N for RJC in case of T/C sensor type
	• T/C : The temperature of terminal is not compensated and
4	the current measured data shows the
	[Sensor temperature - Standard contact point temperature]
	• T/C + RJC : The current measure data shows the sensor
	temperature in compensation of the standard contact point temperature.
	• RJC : Display of standard contact point temperature
(5)	Move to [Fig. 2–1 Main screen]
	Setting the use range of the sensor
	The parameters related with EU and EUS such as the inner signal
6	and alarm are changed in proportion to the current data in case of
	changing the lower range (RL) and upper range (RH)
	• Refer to [Table 3-2]
7	Move from the current screen to the next screen
8	Move to the setting screen for channel 1 and 2
9	Input calibration (BIAS function)
9	Calibrate the temperature input error
	Sensor filter
10	Setting of the sensor filter time when high frequency noise is
	included into the input signal
1	Setting the operation direction of current data (PV) in case of sensor short
(12)	Moving to the next or previous screen using the up/down button
(13)	Move to [Fig. 2-3 System parameter setting screen]

[Table 3–1] Display method for thermo couple

Thermo couple	Measured data	Calculation method
T/C	480°C	500–20
T/C + RJC	500°C	(500–20)+20
RJC	20°C	20

In case of T/C type sensor >>>>

[Fig. 3-3] Screen for selection of the T/C sensor display unit

In case of RTD type sensor >>>>

SENSOR GROUP		SENSOR RAN	GE	:: M	
⊜T/C €RTD	DCV	RANGE HIGH	850.0 °c	•• 1	AIN
SENSOR TYPE		RANGE LOW	-200.0 °c	+	-
SENSOR SELECT	PT A	BIAS	0.0 °c	CH1	Cł
DISPLAY UNIT		SENSOR FILTER	0 SEC		
UNIT SELECT	°c	PV WHEN S. @UNSET @U			
				-	4
				-	
				🧿 SE	TU
[Fig. 3-	-4] Screen fi	or selection of t	he sensor inpu		TU
		or selection of t	he sensor inpl	ut RTD	01.
SENSOR II	NPUT SET			ut RTD 22.1 01:	01. 25 I
	NPUT SET	Or selection of t		ut RTD	01. 25 I
SENSOR II	NPUT SET	SENSOR RAN	GE	ut RTD 22.1 01:	01. 25 I
SENSOR II	NPUT SET	SENSOR RAN RANGE HIGH	GE 850.0 °с	ut RTD 22.1 01:	01. 25 I
SENSOR II	NPUT SET	SENSOR RAN RANGE HIGH RANGE LOW	GE 850.0 °c -200.0 °c 0.0 °c	Lt RTD	01. 25 I
SENSOR GROUP	NPUT SET	SENSOR RAN RANGE HIGH RANGE LOW BIAS PT B	GE 850.0 °c -200.0 °c 0.0 °c	Lt RTD	01. 25 I
SENSOR II	PT A PT C	RANGE HIGH RANGE LOW BIAS PT B T D U U U U U U U U U U U	6E 850.0 °C -200.0 °C 0.0 °C 0.5EC 0FN	Lt RTD	01. 25 I
SENSOR II	PT A	RANGE HIGH RANGE LOW BIAS PT B T D	6E 850.0 °C -200.0 °C 0.0 °C 0.5EC 0FN	Lt RTD	01.: 25 F

03. Sensor input setting

Screen in case of sensor type DCV >>>>

SENSOR INPUT SET				01.27 02 PM
SENSOR GROUP	SENSOR RANGE		:: M	AIN
@T/C @RTD @DCV	2 RANGE HIGH	2.000 V		-
SENSOR TYPE	2 RANGE LOW	0.400 V	-	-
SENSOR SELECT 0.4~2.0V	BIAS	0.0 °c	CH1	CH2
DISPLAY UNIT	SENSOR FILTER	0 SEC		
	SCALE HIGH	100.0 °c		
	SCALE LOW	0.0 ℃		
	PV WHEN S.OF	PN		
DOT POSITION 1	OUNSET OUP	COMN	-	
			🧔 SE	TUP

[Fig. 3-6] Screen for selection of sensor input DCV

① Setting of the digit under the decimal point

② Setting of the voltage use range for voltage input sensor

③ Setting the display scale for the input voltage

[Fig. 3-7] Screen for selection of DCV sensor type

[Fig. 3-8] Screen for selection of sensor display unit

SENSOR INPUT SET			22.01.27 02 46 PM
SENSOR GROUP	SENSOR RANG		SEMAIN
●T/C ●RTD ●DCV	RANGE HIGH	2.000 V	
SENSOR TYPE	RANGE LOW	0.400 V	
SENSOR SELECT	BIAS	0.0 °c	CH1 CH2
	SENSOR FILTER	0 SEC	
UNIT SELECT 2	SCALE HIGH	100.0 °c	
	SCALE LOW	0.0 °c	
DOT POSITION 1	PV WHEN S.O	PN	
	OUNSET OUP	⊘ DOWN	-
			🙆 SETUP

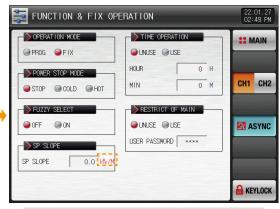
[Fig. 3-9] Screen for selecting the decimal point for the sensor

[Fig. 3–10]The unit name can be set when the input button _______ is pressed on the screen selected for editing the DCV sensor display unit.

[Fig. 3–11] Screen for setting the name after selection of the display unit by editing.

SUMMON

31


Screen for ${\rm k}{\rm P}_{\rm I}$ unit in DCV sensor type >>>>

		22.01.27 02:48 PM
SENSOR RANGE		SEMAIN
RANGE HIGH	2.000 V	
RANGE LOW	0.400 V	← →
BIAS	0.0 🚯	CH1 CH2
SENSOR FILTER	0 SEC	
SCALE HIGH	100.0 🚯	
SCALE LOW	0.0 🚯	
PV WHEN S.OF	PN	
OUNSET OUP	@ DOWIN	T
		🙆 SETUP
	RANGE HIGH RANGE LOW BIAS SENSOR FILTER SCALE HIGH SCALE LOW	RANGE LOW 0.400 V BIAS 0.0 LAS SENSOR FILTER 0 SEC SCALE HIGH 100.0 LAS SCALE LOW 0.0 LAS

[Fig. 3-12] Screen for setting the display unit (In case of kPa selection)

[Fig. 3-13] Screen for selection of stationary screen in kPu

[Fig. 3–14] Screen for selection of setting data change rate in kPu in operation setting

Parameter	Setting range	Unit	Initial data
Sensor group	T/C, RTD, DCV	ABS	T/C
	TC-K1, TC-K2, TC-J, TC-E, TC-T, TC-R, TC-B, TC-S, TC-L, TC-N, TC-U, TC-W, TC-PLA, TC-C		TC-K2 (When the sensor type is in T/C)
Sensor type	PT A, PT B, PT C, PT D, JPT A, JPT B	ABS	PT A (When the sensor type is in RTD)
	0.4~2.0V, 1~5V, 0~10V, -1~20MV, 0~100MV	ABS	0.4~2,0V (When the sensor group is in DCV)
	°C, °F	ABS	ී
Display unit	°C, °F, Editing, %, Pa, kPa, %RH, mV, V, Ω, Torr, Kgf	ABS	°C (When sensor group is in DCV)
Decimal point location	0~3	ABS	1(When sensor group is in DCV)
Thermocouple display	T/C, TC+RJC, RJC	ABS	TC+RJC(When sensor group is in T/C)
Upper limit range	EU(0.0 \sim 100.0%)	EU	EU(100.0%)
Lower limit range	Lower limit range < Upper limit range	EU	EU(0.0%)
Input calibration	EUS(-100.0 \sim 100.0%)	EUS	EUS(0.0%)
Sensor filter	$0 \sim 120 \text{ SEC}$	Second	0
Scale upper limit	−199,9 ~ 3000,0°C	Ĵ	100.0(When sensor group is in DCV)
Scale lower limit	Scale lower limit(Scale upper limit	Ĉ	0.0(When sensor group is in DCV)

SVINDION

[Table 3–3] Sensor input type

NO.	Sensor type	Temperature range(℃)	Temperature range(°F)	Sensor group	DISP
1	K1	-200 ~ 1370	-300 ~ 2500		TC-K1
2	K2	-200.0 ~ 1370.0	-300.0 ~ 1900.0		TC-K2
3	J	-200.0 ~ 1200.0	-300.0 ~ 1900.0		TC-J
4	E	-200.0 ~ 1000.0	-300.0 ~ 1800.0	anna	TC-E
5	Т	-200.0 ~ 400.0	-300.0 ~ 750.0		TC-T
6	R	0.0 ~ 1700.0	32 ~ 3100		TC-R
7	В	0.0 ~ 1800.0	32 ~ 3300	T/C	TC-B
8	S	0.0 ~ 1700.0	32 ~ 3100	1/0	TC-S
9	L	-200.0 ~ 900.0	-300 ~ 1600		TC-L
10	Ν	$-200.0 \sim 1300.0$	-300 ~ 2400		TC-N
11	U	-200.0 ~ 400.0	-300.0 ~ 750.0		TC-U
12	W	0~2300	32 ~ 4200		TC-W
13	Platinel II	$0.0 \sim$ 1390.0	32 ~ 2500		TC-PLA
14	С	0~2320	32 ~ 4200		TC-C
15	PT A	-200.0 ~ 850.0	$-300.0 \sim 1560.0$		PT A
16	PT B	$-200.0 \sim 500.0$	$-300.0 \sim 1000.0$		PT B
17	PT C	-50.00 ~ 150.00	-148.0 ~ 300.0	RTD	PT C
18	PT D	-200 ~ 850	-300 ~ 1560	KIU	PT D
19	JPT A	-200.0 ~ 500.0	-300.0 ~ 1000.0		JPT A
20	JPT B	-50.00 ~ 150.00	-148.0 ~ 300.0	X	JPT B

NO.	Sensor type	input range	SCALE range	Sensor group	DISP
21	$0.4 \sim 2.0 V$	$0.400 \sim 2.000 \vee$			$0.4 \sim 2.0 V$
22	$1\sim 5V$	1.000 ~ 5.000V			$1\sim 5V$
23	$0 \sim 10V$	$0.00 \sim 10.00 \vee$	$0.0 \sim 100.0^\circ \mathrm{C}$	DCV	$0 \sim 10V$
24	$-10 \sim 20 \mathrm{MV}$	$-10.00 \sim 20.00 {\rm mV}$	20.00mV		$-10 \sim 20 \text{MV}$
25	$0\sim$ 100MV	$0.0 \sim 100.0 \mathrm{mV}$			$0 \sim 100 \mathrm{MV}$

1

(2) Sensor input screen 2

[Fig. 3–15] SP limit setting screen	
SP LIMIT SETTING	22.01.27 03 42 PM
	** MAIN
LIMIT HIGH 100.0 kBa	
LIMIT LOW 0.0 kR	
	CH1 CH2
	T
	🙆 SETUP

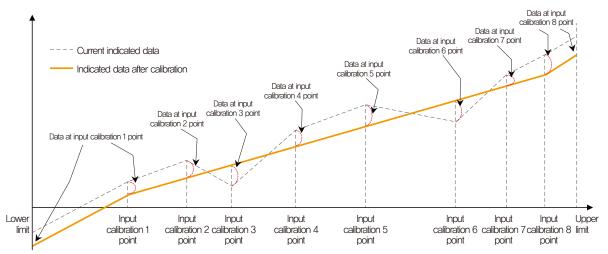
Parameter	Setting range	Unit	Initial data
SP limit high	EU(0.0 \sim 100.0%)	EU	EU(100.0%)
SP limit low	EU(0.0 \sim 100.0%)	EU	EU(0.0%)

Set the range of set value (SP) to be controlled

SVINKION

(3) Sensor input screen 3

- It calibrates the input for each section of temperature.
- The calibration for each range is made in a linear equation method between the calibration points.
- The following screen the explanation for the channel 1 and the screen of channel 2 is same with channel 1.


[Fig. 3–16] Screen for sensor input calibration for each range								
SENSOR P	IECE BI	AS		22.01.27 03:48 PM				
PIECE BIAS1 PIECE BIAS1 PIECE BIAS2 PIECE BIAS3 PIECE BIAS4 PIECE BIAS5 PIECE BIAS5 PIECE BIAS5	POINT 0.0 100.0 100.0 100.0 100.0 100.0 100.0	VALUE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	VOW PV PV S.OPEN	CH1 CH2				
PIECE BIAS8	100.0	0.0		A or Tup				
				O SETUP				

1	Setting of the input calibration for temperature
Ø	Setting of the temperature in each standard point requiring
C	the temperature setting.
3	Setting the calibration temperature in each standard temperature
	Display of the temperature with input calibration
4)	 Impossible to change by touching as it is for reading only

Parameter	Setting range	Unit	Initial data
Data for input calibration 1			
Data for input calibration 2			
Data for input calibration 3			
Data for input calibration 4	EUS(-10.0 \sim 10.0%)	EUS	EUS(0.0%)
Data for input calibration 5			
Data for input calibration 6			
Data for input calibration 7			
Data for input calibration 8			
Point for input calibration 1	EU(0.0~100.0%)		EU(0.0%)
Point for input calibration 2	Lower limit range of PV \leq PV of point for input calibration 1		EU(100.0%)
Point for input calibration 3	\leq PV of point for input calibration 2		EU(100.0%)
Point for input calibration 4	\leq PV of point for input calibration 3	EU	EU(100.0%)
Point for input calibration 5	\leq PV of point for input calibration 4 \leq PV of point for input calibration 5		EU(100.0%)
Point for input calibration 6	\leq PV of point for input calibration 6		EU(100.0%)
Point for input calibration 7	\leq PV of point for input calibration 7		EU(100.0%)
Point for input calibration 8	\leq PV of point for input calibration 8 Upper limit range of PV		EU(100.0%)

3-2. Sectional calibrating input setting

- It shows the sectional input calibration.
- It is the explanation for the channel 1 and the channel 2 is same with channel 1.

E References

• Calculation for each calibration section

 \odot Temperature at the lower limit \sim Input calibration 1 point after calibration = Measured data by sensor + Input calibration 1 point

② Temperature at the input calibration 1 point~ input calibration 2 point after calibration = Measured data by sensor +

(Data at input calibration 2 point- Data at input calibration 1 point)

(Measured data by sensor - Input calibration 1 point) X

(Input calibration 2 point- Input calibration 1 point)

+ Data at input calibration 1 point

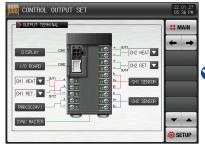
References

$\textcircled{3}$ Temperature at the input calibration 2 point \sim input calibration 3 point after calibration = Measured data by sensor +						
(Measured data by sensor – Input calibration 2 point) X $-$	(Data at input calibration 3 point- Data at input calibration 2 point) (Input calibration 3 point- Input calibration 2 point)	+ Data at input calibration 2 point				
$\textcircled{0}$ Temperature at the input calibration 3 point \sim input calibration						
(Measured data by sensor – Input calibration 3 point) $ imes$ –	(Data at input calibration 4 point- Data at input calibration 3 point) (Input calibration 4 point- Input calibration 3 point)	+ Data at input calibration 3 point				
(5) Temperature at the input calibration 4 point \sim input calibration						
(Measured data by sensor – Input calibration 4 point) $ imes$ –	(Data at input calibration 5 point- Data at input calibration 4 point) (Input calibration 5 point- Input calibration 4 point)	+ Data at input calibration 4 point				
(6) Temperature at the input calibration 5 point \sim input calibration 6 point after calibration = Measured data by sensor +						
(Measured data by sensor – Input calibration 5 point) X $\stackrel{(}{-}$	(Data at input calibration 6 point– Data at input calibration 5 point) (Input calibration 6 point– Input calibration 5 point)	+ Data at input calibration 5 point				
\oslash Temperature at the input calibration 6 point \sim input calibration	ion 7 point after calibration = Measured data by sensor +					
(Measured data by sensor – Input calibration 6 point) X $\stackrel{(}{-}$	(Data at input calibration 7 point– Data at input calibration 6 point) (Input calibration 7 point– Input calibration 6 point)	+ Data at input calibration 6 point				
$^{(8)}$ Temperature at the input calibration 7 point \sim input calibration 8 point after calibration = Measured data by sensor +						
(Measured data by sensor – Input calibration 7 point) X $-$	(Data at input calibration 8 point– Data at input calibration 7 point) (Input calibration 8 point– Input calibration 7 point)	+ Data at input calibration 7 point				
\circledast Input calibration 8 point \sim Temperature at the upper limit a	after calibration = Measured data by sensor + Input calibration 8 poin	t				

Control & Transmitting output

4-1 General control output setting ······44
4-2 Heating · Cooling control output setting · · · · · · 51
4-3 Transmitting output setting screen

Control & Transmitting output flow chart


- General control

[Fig. 4-1] Output type selection screen (General)

[Fig. 4–13] Transmitting output setting scree (In case of PV, SP setting)

[Fig. 4–4] Output terminal setting screen (Channel 2/General)

[Fig. 4-6] Output setting screen (General)

Part 04

Control & Transmitting output flow chart \rightarrow Flow chart Flow chart CONTROL OUTPUT SET 22.01.27 05 32 PM BETBANSMISSION SET 22.02.16 01:54 PM > OUT3 TERMINAL DUT1 TERMINAL CH1 RET. TYPE CH2 RET. TYPE **MAIN MAIN** SSR SCR PV OSP PY OSP CH1 RET. BANGE CH2 BET, BANGE RANGE HIGH 1370.0 % RANGE HIGH 1370.0 * > OUT2 TERMINAL OUT4 TERMINAL 2 872 SCR SSR 900R RANGE LOH -200.0 °c RANGE LOW -200.0 °c SCB TYPE SCB TYPE -SETUP SETUP [Fig. 4–7] OUT output type selection screen [Fig. 4–13] Transmitting output setting screen (In case of PV. SP setting) (Heating · Cooling) 3 22.01.27 05:36 PM CONTROL OUTPUT SET CONTROL OUTPUT SET 22.01.27 05:47 PM OUTPUT TERMINAL DUTPUT BATE SET DIRECTION **MAIN SEMAIN** BEV BEND UP RATE DOWN BATE DISPLAY CONT ANTI RESET WINDLP CH1 CH2 100.0 % 170 BOARD ARM 3 TEMP PARAMETER HUMI PARAMETER CH1 HEAT CYCLE TIME 2 SEC CYCLE TIME 2 SEC CH1 COOL PRESET OUTPUT PRESET OUTPUT PWR(DC24V) AT-GAIN AT-GAIN 1.0

[Fig. 4–10] OUT output terminal selection screen (Channel 2/ Heating · Cooling)

SETUP

SYNC MASTER

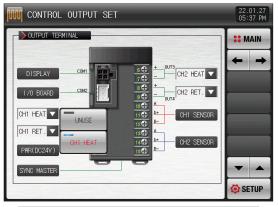
[Fig. 4–12] Output setting screen (Heating · Cooling) -

O SETUP

04. Control & Transmitting output

4-1. General control output setting

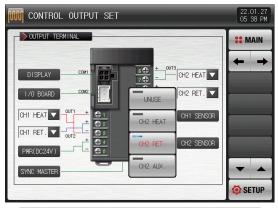
(1) Output setting screen 1


• It sets the type of control output terminal.

[Fig. 4–1] Output type selection screen (General)						
CONTROL OUTPUT SE	Г	22.01.27 05 32 PM				
SSR SCR	SSR SCR					
CUT2 TERMINAL SSR SSR SCR TYPE 4 ~ 20MA	CUT4 TERMINAL SSR SCR SCR TYPE 4 ~ 20MA					
		O SETUP				

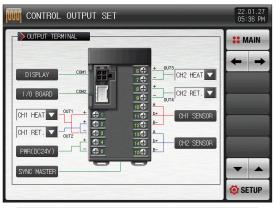
	Setting the output type of OUT1 in channel 1
1	SSR : Setting in case of using control output
	 SCR : Setting in case of using the control output,
	transmitting output and sub output
	Setting the output type of OUT2 in channel 1
(2)	SSR : Setting in case of using control output
C)	SCR : Setting in case of using the control output,
	transmitting output and sub output
	Setting the output type of OUT3 in channel 2
(3)	SSR : Setting in case of using control output
۲	SCR : Setting in case of using the control output,
	transmitting output and sub output
	Setting the output type of OUT4 in channel 2
(4)	SSR : Setting in case of using control output
9	SCR : Setting in case of using the control output,
	transmitting output and sub output
5	Moving from current screen to the next screen
6	Moving to the next or previous screen using the up/down button

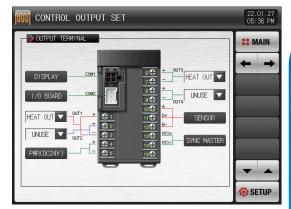
(2) Output setting screen 2


• The following figure is a screen to check/set the setting on the product with graphic.

[Fig. 4-2] OUT1 output terminal selection screen (General)

References


The channel 1 control output and unused setting screen are display as shown when SSR was set in OUT1 output terminal.


[Fig. 4-3] OUT3 output terminal selection screen (General)

References

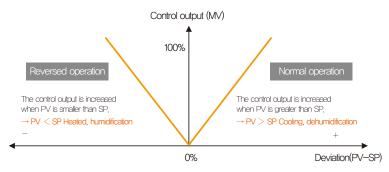
- The channel 2 control output, transmitting output and sub output setting screen are display as shown when SCR was set in OUT3 output terminal.
- When it is set in sub output, the sub output data can be set in [Fig. 6–2 Patten editing screen] of [Operation manual]

[Fig. 4-4] OUT output terminal setting screen (Channel 2/General)

[Fig. 4-5] OUT output terminal setting screen (Channel 1/General)

Parameter		Setting range			Initial data	
		2*20 Setting range 2*00 Setting range		Unit	2*20	2*00
	SSR	Unuse, CH1 output	Unuse, Control output	400	0.14	0
OUT1 output	SCR	Unuse, CH1 output, CH1 transmitting, CH1 sub output	Unuse, Control output, transmitting output, sub output	ABS CH1 output		Control output
0.00	SSR	Unuse, CH1 output	Unuse, Control output	400	CH1 transmitting	Unuse
OUT2 output	SCR	Unuse, CH1 output, CH1 transmitting, CH1 sub output	Unuse, Control output, transmitting output, sub output	ABS		
	SSR	Unuse, CH2 output	Unuse, Control output	400	CH2 output	Transmitting output
OUT3 output	SCR	Unuse, CH2 output, CH2 transmitting, CH2 sub output	Unuse, Control output, transmitting output, sub output	ABS		
	SSR	Unuse, CH2 output	Unuse, Control output			Unuse
OUT4 output	SCR	Unuse, CH2 output, CH2 transmitting, CH2 sub output	Unuse, Control output, transmitting output, sub output	ABS	CH2 transmitting	

(3) Output setting screen 3

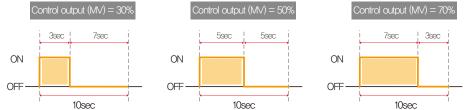

- It sets the parameter to control channel 1 and 2.
- The following screen the explanation on the channel and screen of channel 2 is same with channel 1.

[Fig. 4–6] Output setting screen (General)						
CONTROL OUTPUT SET						
			OUTPUT RATE	SET	: MAIN	
🔵 REV. 🔘 FW	D.		OUP RATE	0.0 <mark>%/S</mark>		
CYCLE TIME	_		ODOWN RATE	0.0 %/S		
CYCLE TIME	2	SEC			CH1 CH2	
OTHER PARAM	eter					
OPRESET OUTPUT	0.0	%				
4 ARW	100.0	%				
5AT-GAIN	1.0					
					🙆 SETUP	

	Setting the PID control operation method
0	Refer to [① Operation direction]
Ø	Setting the period for the operation of control output when
C	control output is 'SSR (SOLID STATE RELAY)
(3)	Disconnect the control output by PID in case of operation stop
0	and sensor short and operate the set output in emergency
	Setting the anti reset wind-up ratio (Data) adopted in anti reset
4	wind-up function operation
	• Refer to [③ Anti reset wind-up]
	Use to control the PID data at once depending on the characteristics
(5)	of the system after Autotunning
9	 Control output = PID x Control time constant (Gain)
	Refer to [④ Control time constant]
6	Setting the ascending change ratio in output quantity when control
	output value (MV) is increased.
$\overline{(7)}$	Setting the descending change ratio in output quantity when control
Ŵ	output value (MV) is decreased.

_	A		
Parameter	Setting range	Unit	Initial data
Operation direction	Reversed operation, normal operation	ABS	Reversed operation
Output period	1–300 sec	ABS	2
Output in emergency	$-5.0 \sim 105.0\%$	%	0.0
Anti reset wind-up	0.0 (Auto) \sim 00.0%	%	100.0
Control time constant	0/1~10.0	ABS	1.0
Ascending change ratio	0.0 (Off) ~ 100.0%/sec	%/SEC	0.0(OFF)
Descending change ratio	0.0 (Off) ~ 100.0%/sec	%/SEC	0.0(OFF)

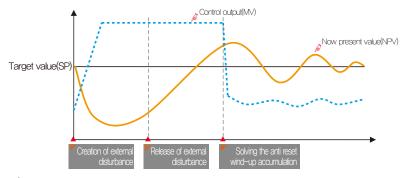
1 Operation direction


04. Control & Transmitting output

S

-

② Output period


- It is applied when the control output type is "SSR(Solid State Relay)".
- It means the time of 1 cycle of "ON/OFF" in the set time.
- "SSR" when output period is 10 seconds.

③ Anti reset wind-up

- It is one of the methods for effective control in case of external disturbance.
- It is a function to inhibit the over shoot by anti reset wind-up when the control output reached to the maximum point.
- When I = 0, it is not operated in the PID setting data.

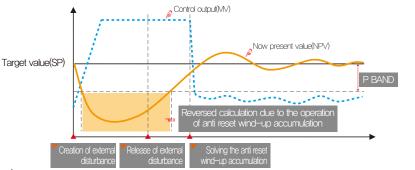
▶ When there is no anti reset wind-up (ARW) function

Creation of external disturbance

: The now present value (NPV) is decreased and control output data (MV) is increased at the moment of external disturbance creation,

Release of external disturbance

: The control output value (MV) is 100% output by the accumulated anti reset wind-up at the moment of release of external disturbance


Solving the anti reset wind-up accumulation

: Control output value (MV) is decreased by solving the anti reset wind-up accumulation

The over shoot is big as the time to solve the anti reset wind-up accumulation gets longer even though the external disturbance is released and it takes time for now present value to be stabilized,

▶ When there is anti reset wind-up (ARW) function

Creation of external disturbance

: The now present value (NPV) is decreased and control output data (MV) is increased at the moment of external disturbance creation,

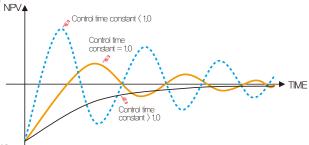
Release of external disturbance

: The control output value (MV) is 100% output by the accumulated anti reset wind-up at the moment of release of external disturbance

Solving the anti reset wind-up accumulation

: Control output value (MV) is decreased by solving the anti reset wind-up accumulation

The over shoot is small as the time to solve the anti reset wind-up accumulation gets shorter by reversed calculation of the anti reset wind-up before entering of now present value (NPV) to ±P Band and now present value is stabilized soon.


Example what is the P Band for input upper limit(RH) = 100.0°C, Input lower limit (RL) = -100.0°C, Proportional band (P) = 10.0%, anti reset wind-up (ARW) = 200%?

Answer ① Input range = Input upper limit (RH) – Input Iower limit (RL) = $100.0^{\circ}C - (-100.0^{\circ}C) = 200.0^{\circ}C$

(2) Input range Proportional band (P) = 200.0°C x10.0% = 20.0°C

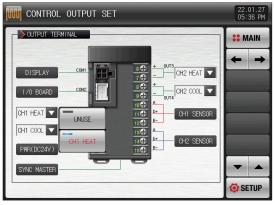
③ P Band = ② x Anti reset wind-up (ARW) = 20.0°C x 200% = 40.0°C

- (4) Control time constant
- It is used to change the control characteristics based on the set PID value after auto tuning,
- It can control the control time constant depending on the object of control and characteristics.
 - Control time constant (1.0 → The response speed is fast, but the hunting is severe.
 - Control time constant >1.0 → The over shoot is reduced, but the response speed becomes slower.

SUMMON

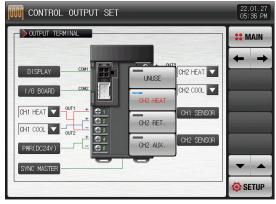
4-2. Heating \cdot Cooling control output setting

(1) Output setting screen 1


- It sets the type of control output terminal.
- It can set the Heating · Cooling output for channel 1 and 2.

1	 Setting the output type of OUT1 in channel 1 SSR : Setting in case of using Heating control output SCR : Setting in case of using the Heating control output, transmitting output and sub output
2	 Setting the output type of OUT2 in channel 1 SSR : Setting in case of using Cooling control output SCR : Setting in case of using the Cooling control output, transmitting output and sub output
3	 Setting the output type of OUT3 in channel 2 SSR : Setting in case of using Heating control output SCR : Setting in case of using the Heating control output, transmitting output and sub output
4	 Setting the output type of OUT4 in channel 2 SSR : Setting in case of using Cooling control output SCR : Setting in case of using the Cooling control output, transmitting output and sub output

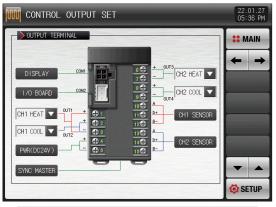
(2) Output setting screen 2


• The following figure is a screen to check/set the setting on the product with graphic.

[Fig. 4-8] OUT1 output terminal selection screen (Heating · Cooling)

References

The channel 1 Heating output and unused setting screen are displayed as shown when SSR was set in OUT1 output terminal.



[Fig. 4–9] OUT4 output terminal selection screen (Heating · Cooling)

References

- The channel 2 Heating output, transmitting output and sub output setting screen are displayed as shown when SCR was set in OUT3 output terminal,
- When it is set in sub output, the sub output data can be set in [Fig. 6–1 Program setting screen] of [Operation manual].

SUMMON

[Fig. 4–10] OUT output terminal setting screen (Channel 2/ Heating · Cooling)

[Fig. 4–11] OUT output terminal setting screen (Channel 1/ Heating · Cooling)

Derem	otor	Setting	range	Linit	Initia	l data
Param	eler	2*20 Setting range	2*00 Setting range	Unit	2*20	2*00
	SSR	Unuse, CH1 Heating	Unuse, Heating OUT	ABS	CH1 Heating	Heating OUT
OUT1 output	SCR	Unuse, CH1 Heating, CH1 trasnmitting, CH1 sub output	Unuse, Heating OUT, transmitting output, sub output	ADS		Healing OUT
	SSR	Unuse, CH1 Cooling	Unuse, Cooling OUT	400	0 1 0 1	
OUT2 output	SCR	Unuse, CH1 Cooling, CH1 trasnmitting, CH1 sub output	Unuse, Cooling OUT, transmitting output, sub output	ABS	CH1 Cooling	Cooling OUT
	SSR	Unuse, CH2 Heating	Unuse, Heating OUT	400	0110111	T
OUT3 output	SCR	Unuse, CH2 Heating, CH2 trasnmitting, CH2 sub output	Unuse, Heating OUT, transmitting output, sub output	ABS	CH2 Heating	Transmitting output
	SSR	Unuse, CH2 Cooling	Unuse, Cooling OUT	400	01.10.01	
OUT4 output	SCR	Unuse, CH2 Cooling, CH2 transmitting, CH2 sub output	Unuse, Cooling OUT, transmitting output, sub output	ABS	CH2 Cooling	Unuse

SVIMUON

(3) Output setting screen 3

- It sets the parameter to control channel 1 and 2.
- The following screen the explanation on the channel and screen of channel 2 is same with channel 1.

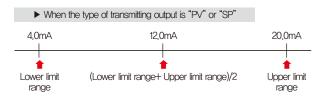
[Fig. 4–12] Output setting screen (Heating · Cooling)								
CONTROL	OUTPU	t si	ĒT				01.27 47 PM	
				SET		:: N	IAIN	
@REV. @FW	Ο.		6 UP RATE	0.0	%/S			
ANTI RESET	WINDUP		ODOWN RATE	0.0	%/S	-	-	
ARW	100.0	%				CH1	CH2	
TEMP PARAME	TER		-> HUMI PARAMET	ER				
3 CYCLE TIME	2	SEC	CYCLE TIME	2	SEC			
4 PRESET OUTPUT	0.0	%	4 PRESET OUTPUT	0.0	*			
5 AT-GAIN	1.0		5 AT-GAIN	1.0				
						-		
						🧔 SE	TUP	

	Setting the PID control operation method
\bigcirc	Refer to [① Operation direction]
	Setting the anti reset wind-up ratio (Data) adopted in anti reset
2	wind-up function operation
	Refer to [3 Anti reset wind-up]
3	Setting the period for the operation of control output when control
9	output is 'SSR (SOLID STATE RELAY)
(4)	Disconnect the control output by PID in case of operation stop and
4	sensor short and operate the set output in emergency
	Use to control the PID data at once depending on the characteristics
(5)	of the system after auto tuning
9	Control output = PID x Control time constant (Gain)
	Refer to [④ Control time constant]
6	Setting the ascending change ratio in output quantity when control
0	output value (MV) is increased.
$\overline{\mathcal{O}}$	Setting the descending change ratio in output quantity when control
U	output value (MV) is decreased.

04. Control & Transmitting output

4-3. Transmitting output setting screen(1) Control output se

- It is a screen to set the type of transmitting output.
- Either PV or SP can be set for transmitting output.


Fig, 4–13] Transmitting output selection screen (In case of selecting PV or SP)						
RETRANSMISSION SE	22.02.16 01:54 PM					
CHI RET. TYPE	CH2 RET. TYPE	 ■ MAIN ■ ● 				
2 CHI RET. RANSE RANGE HIGH 1370.0 ℃ RANGE LOW -200.0 ℃	ANGE HIGH 1370.0 °C RANGE LOW −200.0 °C					
		CA SETUD				
		SETUP				

- ① Setting the type of transmitting output in channel 1
- 2 Setting the upper \cdot lower limit of the transmitting output in channel 1
- ③ Setting the type of transmitting output in channel 2
- (d) Setting the upper \cdot lower limit of the transmitting output in channel 2

Parameter	Setting range	Unit	Initial data
Transmitting type	PV, SP	ABS	PV
Transmitting	EU(0.0~100.0%)		
upper limit range	Transmitting lower limit	EU	EU(100.0%)
Transmitting	range < Transmitting		
lower limit range	upper limit range	EU	EU(0.0%)

(2) Output depending on the transmitting type

- The transmitting output is in 4~20mA.
- User after attaching the 250 Ω resister (Accurate resister) at both ends of transmitting output when 1~5 V is used for transmitting output.

Inner signal(IS)

5–1 Inner signal setting ·			• •		• •		• •									• •		• •	-58
5–2 Inner signal operation					• •											• •			·60

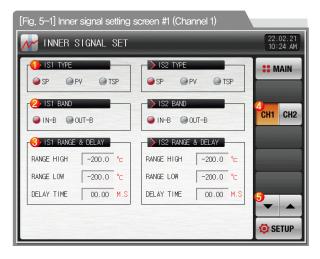
Inner signal flow chart

MINNER SIGNAL SET		22.02.21 10:24 AM
SP PV TSP	SP PV TSP	:: MAIN
IST EAND IN-B @ OUT-B	IS2 EAND	CH1 CH2
IST RANGE & DELAY	IS2 RANGE & DELAY	
RANGE HIGH -200.0 ℃ RANGE LOH -200.0 ℃	RANGE HIGH -200.0 °c RANGE LOW -200.0 °c	
DELAY TIME 00.00 M.S	DELAY TIME 00.00 H.S	TA
		Ö SETUP

[Fig. 5–1] Inner signal setting screen #1 (Channel 1)

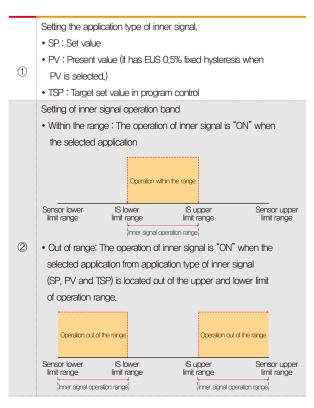
SP	PV @TSP	SP PV	@ TSP	** MAIN
IS17 BAND	DUT-B	IS18 BAND	т-в	CH1 CI
> IS17 RANG	E & DELAY	IS18 RANGE	& DELAY	
RANGE HIGH	-200.0 °c	RANGE HIGH	-200.0 °c	
RANGE LOH	-200.0 °c	RANGE LOW	-200.0 °c	
DELAY TIME	00.00 H.S	DELAY TIME	00.00 M.S	

[Fig. 5-2] Inner signal setting screen #1 (Channel 2)



05. Inner signal (IS)

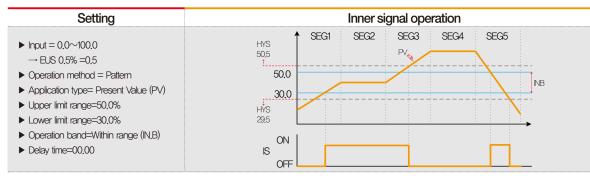
Explanation with CH1 CH2 corresponds to TEMP2*20 ONLY (TEMP2*00 series not support this setting)

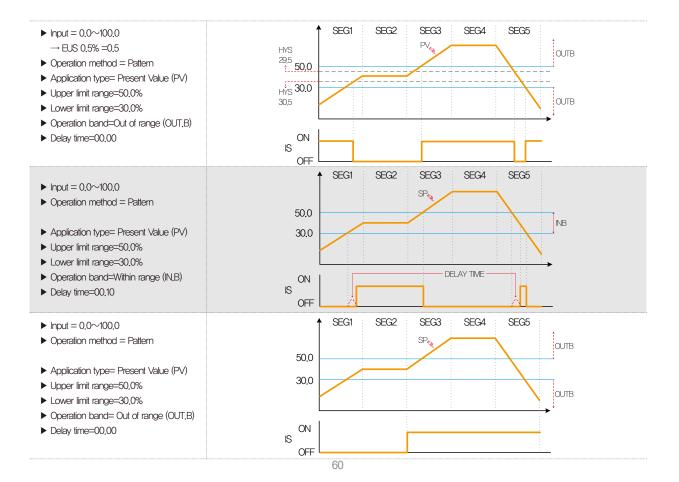

5-1. Inner signal setting

- It is a screen to set the object of application, type and operation of each inner signal.
- Setting of 16 (IS1~IS16) inner signal operations is available in Channel 1.
- Setting of 16 (IS9~IS32) inner signal operations is available in Channel 2,
- The operation range and delay time of inner signal can be set in [Fig. 5-1] Inner signal setting screen #1.

[Fig. 5-2] Inner signal setting screen #1 (Channel 2)

Setting of the upper \cdot lower limit of the operation range and delay time.


- Upper limit range · lower limit range : Setting the operation range
- ③ of inner signal application
 - Delay time : Setting of the delay time to be applied in inner signal operation
- ④ Moving to the channel 1 or 2 setting screen
- (5) Moving to the previous or next screen using up/down button.


Parar	neter	Setting range	Unit	Initial data
Inner signal #n application		SP, PV, TSP	ABS	SP
Inner signal #n	operation band	Within the range, out of range	ABS	Within the range
Inner signal	Upper limit	Channel 1. EU(0.0~100.0%)	Channel1.EU	Channel1.EU(0.0%)
#n operation Lower limit range Delay time		Inner signal #n lower limit range \leq Inner signal #n upper limit range	Channel1.EU	Channel1.EU(0.0%)
		00.00~99.59 (Min, Sec)	ABS	00.00
Inner signal #m	application type	SP, PV, TSP	ABS	SP
Inner signal #n	operation band	Within the range, out of range	ABS	Within the range
Inner signal	Upper limit	Channel 2. EU(0.0~100.0%)	Channel2.EU	Channel2.EU(0.0%)
#n operation	Lower limit	Inner signal #n lower limit range \leq Inner signal #n upper limit range	Channel2.EU	Channel2.EU(0.0%)
range	Delay time	00.00~99.59 (Min, Sec)	ABS	00.00

 \times It can be set for #n= 1~8. \times It can be set for #m= 9~16.

5-2. Inner signal operation

When the change rate (Slope) is set in stationary operation, the "Target set value (TSP)" operates the same motion with "Target set value (TSP)" of program control, but, when the change rate (Slope) is not set, the "Target set value (TSP)" operates in "Now present value (SP)"

ON/OFF signal

6-1 ON/OFF signal setting		 	 	•••	• •	 • •		 		 	• •	 	 • • 6	64
6-2 ON/OFF signal operat	ion	 	 			 		 		 		 	 6	66

ON/OFF signal flow chart

	1 - TE SIGN LOW SP	MIDDLE SP	HIGH SP	HIGH DEV	LOW DEV	** N	IAIN
T1	0.0	0.0	0.0	0.0	0.0		
T2	0.0	0.0	0.0	0.0	0.0	0114	
T3	0.0	0.0	0.0	0.0	0.0	CH1	Cł
T4	0.0	0.0	0.0	0.0	0.0		
T5	0.0	0.0	0.0	0.0	0.0		
T6	0.0	0.0	0.0	0.0	0.0		

[Fig. 6–1] ON/OFF signal setting screen (Channel 1)

:: MAIN	LOW DEV	HIGH DEV	HIGH SP	MIDDLE SP	- TIB SIG	> 18
	0.0	0.0	-200.0	-200.0	-200.0	T8
	0.0	0.0	-200.0	-200.0	-200.0	Т9
CH1 CH	0.0	0.0	-200.0	-200.0	-200.0	T10
	0.0	0.0	-200.0	-200.0	-200.0	T11
	0.0	0.0	-200.0	-200.0	-200.0	T12
	0.0	0.0	-200.0	-200.0	-200.0	T13

[Fig. 6-2] ON/OFF signal setting screen (Channel 2)

06. ON/OFF signal

Explanation with CH1 CH2 corresponds to TEMP2*20 ONLY (TEMP2*00 series not support this setting)

6-1. ON/OFF signal setting

- It is a screen to set the range, upper · lower deviation of ON/OFF signal.
- Total setting of 12 ON/OFF signal operations, 6 for Channel 1 and 2 respectively is available.
- Setting of relay number and delay time is available in [11-1(3) ON/OFF signal relay setting screen].

[Fig. 6-1]	[Fig. 6–1] ON/OFF signal setting screen (Channel 1)							
📝 ON	/OFF SIG	NAL				22.01.28 09 13 AM		
	~ TE SIGNAL LOW SP M	IIDDLE SP	HIGH SP	HIGH DEV	LOW DEV	SE MAIN		
T2	0.0	0.0	0.0	0.0	0.0	6 CH1 CH2		
Т3	0.0	0.0	0.0	0.0	0.0	CHI CHZ		
T4	0.0	0.0	0.0	0.0	0.0			
T5	0.0	0.0	0.0	0.0	0.0			
T6	0.0	0.0	0.0	0.0	0.0			
						O SETUP		

1	Setting of lower limit SP boundary in ON/OFF signal operation
2	Setting of medium limit SP boundary in ON/OFF signal operation
3	Setting of upper limit SP boundary in ON/OFF signal operation

	~ T13 SIG	MIDDLE SP	HIGH SP	HIGH DEV	LOW DEV	** N	A
Т8	-200.0	-200.0	-200.0	0.0	0.0		
Т9	-200.0	-200.0	-200.0	0.0	0.0	0114	
T10	-200.0	-200.0	-200.0	0.0	0.0	CH1	1
T11	-200.0	-200.0	-200.0	0.0	0.0		
T12	-200.0	-200.0	-200.0	0.0	0.0		
T13	-200.0	-200.0	-200.0	0.0	0.0		
	-					_	

[Fig. 6–2] ON/OFF signal setting screen (Channel 2)

- ④ Setting of operation point in upper limit range
- ⑤ Setting of operation point in lower limit range
- 6 Moving to channel 1 or 2 setting screen

N

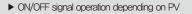
Parameter	Setting range	Unit	Initial data
Channel 1 T#n Low SP	Channel 1. EU(0.0~100.0%)	Channel 1. EU	Channel 1. EU(0.0%)
Channel 1 T#n Middle SP	Channel 1 lower limit range≤ Channel 1 T#n Low SP(Channel 1 T#n	Channel 1. EU	Channel 1. EU(0.0%)
Channel 1 T#n High SP	middle SP< Channel 1 T#n high SP \leq Channel 1 upper limit range	Channel 1. EU	Channel 1. EU(0.0%)
Channel 1 T#n High deviation	Channel 1. EUS(0.0~100.0%)	Channel 1. EU	Channel 1. EUS(0.0%)
Channel 1 T#n Low deviation	Channel 1. EUS(0.0~100.0%)	Channel 1. EU	Channel 1. EUS(0.0%)
Channel 2 T#m Low SP	Channel 2, EU(0.0~100.0%)	Channel 2. EU	Channel 2, EU(0.0%)
Channel 2 T#m Middle SP	Channel 2 lower limit range≤ Channel 2 T#m Low SP(Channel 2 T#m	Channel 2. EU	Channel 2. EU(0.0%)
Channel 2 Tm High SP	middle SP< Channel 2 T#m high SP≤ Channel 2 upper limit range	Channel 2. EU	Channel 2. EU(0.0%)
Channel 2 T#m High deviation	Channel 2, EUS(0,0~100,0%)	Channel 2. EU	Channel 2. EUS(0.0%)
Channel 2 T#m Low deviation	Channel 2, EUS(0.0~100.0%)	Channel 2, EU	Channel 2. EUS(0.0%)

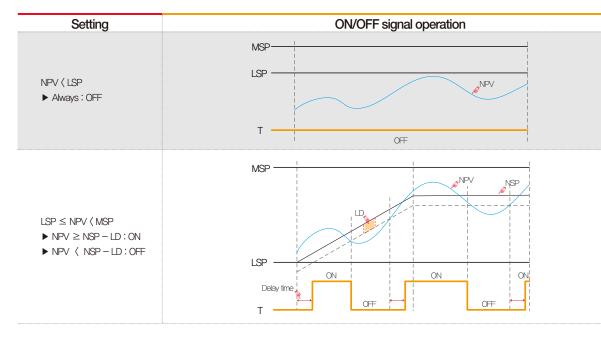
% It can be set for #n= 1~6. % It can be set for #m= 7~12.

References

High, low deviation motion explanation

```
- High deviation operation
```


```
(1) Middle SP \langle Present value (PV \leq In case of upper limit SP
```


- Low deviation operation

```
② Lower limit SP ≤ Present value (PV) \langle In case of middle SP
Present value (PV) ≥ Present set value (SP) – Low deviation : The operation is "ON"
Present value (PV) \langle Present set value (SP) – High deviation : The operation is "OFF"
% Refer to [6–2 ON/OFF signal operation]
```

6-2. ON/OFF signal operation

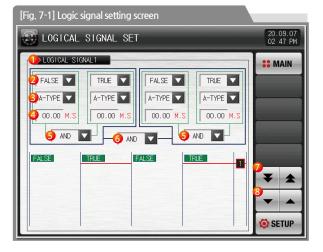
- Delay time is the set time in ON/OFF signal delay time in DO relay setting.
- LSP = LOW SP, MSP = MIDDLE SP, HSP = HIGH SP, NPV = NOW PV, NSP = NOW SP
- LD = LOW Deviation, HD = HIGH Deviation, T = ON/OFF signal

Logic signal

7–1. Logic signal setting \cdots	 	 69
7–2, Logic signal operation	 	 72

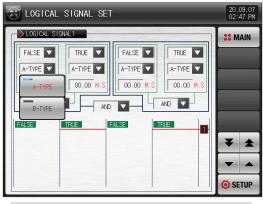
Logic signal flow chart

[Fig. 7–1] Logic signal setting screen


[Fig. 7–6] Logic signal setting screen #1

7-1. Logic signal setting

- It is a screen to set the logic signal.
- The logic signal can be set up to 32,


1	Set to operation condition for logic signal
2	Select to applicable object of logic signal • Refer to [Table 7–1]
3	 Set to output method of application of the operation signal A-Contact : Output contact is connected, when signal of applicable object is activated B-Contact : Output contact is disconnected, when signal of applicable object is activated
4	Set to delay time when the output of the application of the logic signal is activated
5	Set to applicable operator when logic signal works.
6	Set to applicable operator for two logic groups calculated from number $\ensuremath{\mathbb{S}}$
7	Moving to the next or previous screen of eight using the up/down button
8	Moving to the next or previous screen using the up/down button

References

It does not apply to delay time and method of output when selecting a TRUE / FALSE,

🛞 LOGIC	LOGICAL SIGNAL SET 22.02.18 02 55 PM								
LOGICAL	LOGICAL SIGNAL1								
ρ	ESC	TRUE	FALSE	1. IS1	1. IS2	1. IS3	1. IS4		
IS	TS	1.IS5	1. IS6	1. IS7	1. IS8	1. IS9	1. IS10	Ľ	
On/Off	Logic	1. IS11	1. IS12	1. IS13	1. IS14	1. IS15	1. IS16	Ľ	
Alarm	S.Alarm	2. IS17	2. IS18	2. IS19	2. IS20	2. IS21	2. IS22	K	
DI	СН	2. IS23	2. IS24	2. IS25	2. IS26	2. IS27	2. IS28	H	
MAN	Etc.	2. IS29	2.1530	2. IS31	2. IS32			F	
MAN		2. IS29	2.1530	2. IS31	2. IS32				

[Fig. 7-2] Applicable object of logic signal setting screen

[Fig. 7-3] Setting screen of the sensing method of the logic signal

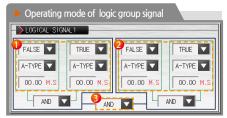
20.09.07 02 47 PM							
DIGICAL SIGNAL1	SEMAIN						
FALSE TRUE FALSE TRUE TRUE							
00.00 M.S 00.00 M.S 00.00 M.S							
	-						
DELAY TIME1 OF LOGIC1 0.00 ~ 99.59							
1 2 3 4 5 6 + BS	ESC						
7 8 9 0 . +/- 🕄 CLEAR	ENTER						

[Fig. 7-4] Logic signal delay time setting screen

[Fig. 7-5] Logic signal operato setting screen

[Table 7–1] Forms	of logic signal parameter
-------------------	---------------------------

Daramatar	Setting range		Unit	ملاحله	
Parameter	Display	Display Logic type		data	
	IS	TRUE, FALSE, 1.IS1 ~ 1.IS16, 2.IS17~2.IS32	ABS	FALSE	
	TS	TRUE, FALSE, 1.TS1 ~ 1.TS8, 2.TS1 ~ 2.TS8	ABS	FALSE	
	ON/OFF	TRUE, FALSE, 1.T1 ~ 1.T7, 2.T8 ~ 2.T14	ABS	FALSE	
	LOGIC	TRUE, FALSE, LOG1 ~ LOG32	ABS	FALSE	
	ALARM	TRUE, FALSE, 1.AL1 \sim 1.AL8, 2.AL9 \sim 2.AL16	ABS	FALSE	
Logic signal#n applicable object	S.ALARM	TRUE, FALSE, 1.AL1 ~ 1.AL4, 2.AL1 ~ 2.AL4	ABS	FALSE	
	DI	TRUE, FALSE, D1 ~ D16(D130 옵션 : D1 ~ D130)	ABS	FALSE	
	СН	TRUE, FALSE, 1.RUN, 1.SOPN, 1.WAIT, 1.UP, 1.SOAK, 1.DOWN, 1.FTM 2.RUN, 2.SOPN, 2.WAIT, 2.UP, 2.SOAK, 2.DOWN, 2.FTM	ABS	FALSE	
	MAN	TRUE, FALSE, MAN1~MAN12	ABS	FALSE	
	ETC.	TRUE, FALSE, U-KEY, 1.FEND, 1.PEND, 1.HOLD, 1.1REF, 1.2REF, 1.ERR, 2.FEND, 2.PEND, 2.HOLD, 2.1REF, 2.2REF, 2.ERR,	ABS	FALSE	
Logic signal#n output method		A-Contact, B-Contact		A-Contact	
Logic signal#n delay time		00.00~99.59 (MIN.SEC)		00.00	
Logic signal#n operator	AND, OR			AND	


% #n∶1~32

SVIMUON

7-2. Logic signal operation

References

- > AND : When both ON, the logic output relay is "ON"
- OR : Artimetic output relay is "ON", when more than one of logic signal object outputs are "ON".
- TRUE : Outputs of logic signal applicable object are calculated to "ON"
- ▶ FALSE : Outputs of logic signal applicable object are calculated to "OFF"

Example) Logic group signal parameter

1 Logic group 1		Output
IS1	T.RUN	Output
OFF	OFF	OFF
OFF	ON	OFF
ON	OFF	OFF
ON	ON	ON

<Logic group 1 AND Output>

2 Logic	2 Logic group 2	
AL1	U-KEY	Output
OFF	OFF	OFF
OFF	ON	ON
ON	OFF	ON
ON	ON	ON

<Logic group 2 OR Output>

% When select to B-contact as output condition, operation of the ON / OFF is reversed.

3 Logic group 1 Output < AN	Output	
Logic group 1 Output	Οιιριι	
OFF	OFF	OFF
OFF	ON	OFF
ON	OFF	OFF
ON	ON	ON

<Logic group 1 and Logic group 2 AND Output>

Alarm signal

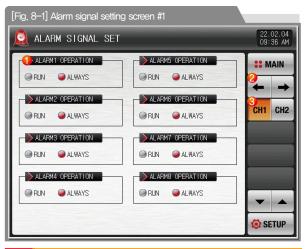
8–1 Alarm signal setting \cdots	 	
8–2 Alarm signal operation	 	

[Fig. 8-1] Alarm signal selection screen #1

[Fig. 8–2] Alarm signal selection screen #2

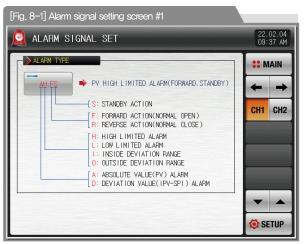
[Fig. 8–2] Alarm signal selection screen #2

[Fig. 8-5] SEG alarm signal selection screen (Channel 1)


08. Alarm signal

Explanation with CH1 CH2 corresponds to TEMP2*20 ONLY (TEMP2*00 series not support this setting)

8-1. Alarm signal setting


(1) Alarm signal setting screen 1

• The following screen is the explanation for channel 1 and screen of channel 2 is same with channel 1.

Setting of alarm operation

- Operation : The alarm operation is performed only during operation.
- Always : The alarm operation is performed always regardless of Run/Stop.
- ② Moving from current screen to next screen
- ③ Moving to channel 1 or 2 setting screen

Parameter	Setting range	Unit	Initial data
Channel 1 alarm operation	Run, Always	ABS	Always
Channel 2 alarm operation	Run, Always	ABS	Always

(2) Alarm signal setting screen 2

- It is a screen to set the alarm for channel 1 and 2.
- The screen setting in channel 1 and 2 is same.
- There are 8 alarm signals for each channel.
- There are 20 types of alarm signal.

[Fig. 8–2] Alarm signal selection #1 in screen 2	
🧕 ALARM SIGNAL SET	22.02.07 09 38 AM
	** MAIN
TYPE SELECT OFF	+ +
	CH1 CH2
	3
	▼ ▲
	😟 SETUP

	1	Setting of alarm signal type
	0	Selection of the alarm signal type to be used
2	0	Refer to [Table 8–1 Alarm type]
	3	Moving to the next and previous screen using up/down button.

[Fig. 8–3] Alarm signal selec	ction #2 in sc	reen 2		
🧕 ALARM SIGNAL SET				2.02.07 9 39 AM
ALARM1 TYPE		2 TYPE		MAIN
TYPE SELECT OFF	OFF	AH.F	AL.F	-
	DH.F	DL.F	DH.R	CH2
	DL.R	DO.F	DI.F	
	AH.R	AL.R	AH.FS	
	AL . FS	DH.FS	DL.FS	
	DH.RS	DL . RS	DO.FS	
	DI.FS	AH.RS	AL . RS	ETUP

[Fig. 8–3] Alarm signal selection #3 in screen 2 22.02.07 🔄 ALARM SIGNAL SET 09 39 AM 💙 ALARM1 TYPE 🔪 ALARM2 TYPE : MAIN TYPE SELECT AH.F $\overline{}$ TYPE SELECT D0.F 🔽 + > ALARM1 PARAMETER > ALARM2 PARAMETER CH1 CH2 POINT 1370.0 °c 4 HIGH POINT 1570.0 °c 2 HYSTERES IS 7.9 °c 6 LOW POINT 1570.0 ℃ BOELAY TIME 00.00 M.S HYSTERESIS 7.9 °c B DELAY TIME 00.00 M.S SETUP

E References

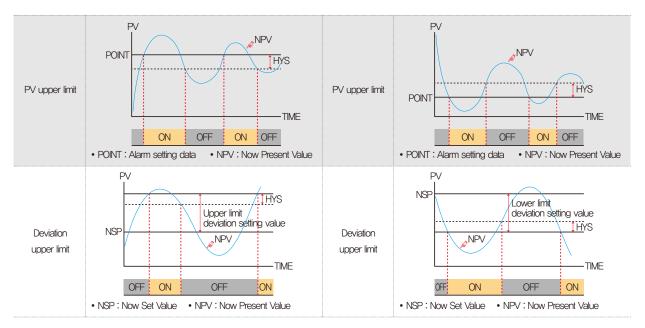
- When the alarm type was set in AH,F and DO,F in [Fig. 8–4 Alarm signal selection screen #2], the following screen is displayed.
- Setting of alarm setting data
 Setting of hysteresis data to be applied to release after alarming
 Setting of delay time to be applied during alarm signal operation
 Setting of upper limit deviation data in alarming for deviation
 Setting of lower limit deviation data in alarming for deviation

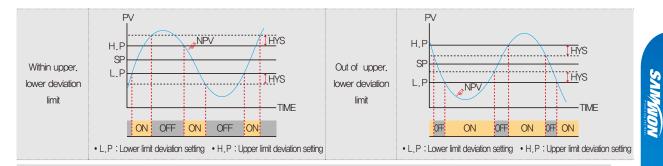
Parameter	Setting range	Unit	Initial data
	OFF, AH.F, AL.F, DH.F, DL.F, DH.R, DL.R DO.F, DI.F, AH.R,		
Alarm #n type	ALR, AH.FS, ALFS, DH.FS, DLFS, DH.RS, DLRS, DO.FS,	ABS	OFF
	DI.FS, AH.RS, AL.RS		
			Channel 1.EU(100.0%)
Alarm #n point	Channel 1.EU (-5.0~105.0%)	Channel1.EU	(Alarm#n type= is not one of DO.F
			DI.F, DO.FS and DI.FS
Alarm #n upper limit point		Channel1.EUS	Channel 1.EUS(0.0%)
	Channel 1.EUS (-100.0~100.0%)		(Alarm#n type= is one of DO.F, DI
Alarm #n lower limit point		Channel1.EUS	DO.FS and DI.FS
Alarm #n hysteresis	Channel 1.EUS (0.0~100.0%)	Channel1.EUS	Channel 1.EUS(0.5%)
Alarm #n delay time	00.00~99.59 (Min.Sec)	ABS	00.00
	OFF, AH.F, AL.F, DH.F, DL.F, DH.R, DL.R DO.F, DI.F, AH.R,		
Alarm #m type	ALR, AH.FS, ALFS, DH.FS, DLFS, DH.RS, DLRS, DO.FS,	ABS	OFF
	DLFS, AH.RS, AL.RS		
			Channel 2.EU(100.0%)
Alarm #m point	Channel 2.EU (-5.0~105.0%)	Channel2.EU	(Alarm#m type= is not one of DO.
			DI.F, DO.FS and DI.FS
Alarm #m upper limit point	Channel 2.EUS(-100,0~100,0%)	Channel2 EUS	Channel 2.EUS(0.0%)
nam #m upper limit point		Undrin 1912,EUS	Channel 1.EUS(0.0%)
Alarm #m lower limit point		Channel2 EUS	(Alarm#m type= is one of DO.F, DI
Alann #In lower III III point		Channel2,EUS	DO.FS and DI.FS
Alarm #m hysteresis	Channel 2.EUS (0.0~100.0%)	Channel2.EUS	Channel 2.EUS(0.5%)
Alarm #m delay time	00.00~99.59 (Min.Sec)	ABS	00.00

% #n∶1 ~ 8 % #m∶9 ~ 16

(3) Segment alarm signal setting screen

- It is a screen to set the segment alarm for channel 1 and 2,
- The setting of channel 1 and 2 is same.
- There are 8 segment alarm signals in each channel.
- There are 10 types of segment alarm signal.
- The segment alarm signal can be used in segment alarm in [6-1 Program pattern setting] in [Operation manual]


[Fig. 8–5] Segment alarm signal selection screen (Channel 1)


Parameter	Setting range	Unit	Initial data
Channel 1 Seg Alarm #n type	OFF, AH.F, AL.F, DH.F, DL.F, DH.R, DL.R DO.F, DI.F, AH.R, AL.R	ABS	OFF
Channel 1 Seg Alarm #n point	Channel 1.EU (-5.0~105.0%)	Channel1.EU	Channel 1.EU(100.0%) (Alarm#n type= is not one of DO.F, DI.F
Channel 1 Seg Alarm #n upper limit point		Channel1.EUS	Channel 1.EUS(0.0%)
Channel 1 Seg Alarm #n lower limit point	Channel 1.EUS (-100.0~100.0%)	Channel1,EUS	(Alarm#n type= is one of DO.F, DI.F
Channel 1 Seg Alarm #n hysteresis	Channel 1.EUS (0.0~100.0%)	Channel1,EUS	Channel 1.EUS(0.5%)
Channel 1 Seg Alarm #n delay time	00.00~99.59 (Min.Sec)	ABS	00.00
Channel 2 Seg Alarm #n type	OFF, AH,F, AL,F, DH,F, DL,F, DH,R, DL,R DO,F, DI,F, AH,R, AL,R	ABS	OFF
Channel 2 Seg Alarm #n point	Channel 2.EU (-5.0~105.0%)	Channel2.EU	Channel 2,EU(100.0%) (Alarm#m type= is not one of DO.F, DI.F
Channel 2 Seg Alarm #n upper limit point		Channel2_EUS	Channel 2.EUS(0.0%) Channel 1.EUS(0.0%)
Channel 2 Seg Alarm #n lower limit point	Channel 2,EUS (100,0~-100,0%)	Channel2,EUS	(Alarm#m type= is one of DO.F, DI.F
Channel 2 Seg Alarm #n hysteresis	Channel 2.EUS (0.0~100.0%)	Channel2,EUS	Channel 2.EUS(0.5%)
Channel 2 Seg Alarm #n delay time	00.00~99.59 (Min,Sec)	ABS	00.00

Display	Alam	n type	Output	direction	Standby	motion
Display	Absolute data operation	Deviation motion	Normal operation	Reverse operation	Yes	No
AH.F	Indicated data upper limit					
AL,F	Indicated data lower limit					
DH.F		Deviation upper limit				
DL,F		Deviation lower limit				
DH.R		Deviation upper limit				-
DL,R		Deviation lower limit				
DO.F		Out of upper limit,lower limit deviation range				
DI.F		Within upper limit,lower limit deviation range				
AH.R	Indicated data upper limit					
AL,R	Indicated data lower limit					
AH.FS	Indicated data upper limit					
AL,FS	Indicated data lower limit					
DH.FS		Deviation upper limit				
DL,FS		Deviation lower limit				
DH.RS		Deviation upper limit				
DL.RS		Deviation lower limit				
DO.FS		Out of upper limit,lower limit deviation range				
DI.FS		Within upper limit,lower limit deviation range				
AH.RS	Indicated data upper limit					
AL.RS	Indicated data lower limit					

* There is no warning alarm for standby operation in the segment alarm signal.

8-2. Alarm signal operation

References

HYS(HYSTERESIS) : HYS (Hysterisis): It is a deviation applied in recovery (OFF) after alarming (ON). The initial data is EUS (0.5%) and it is not operated when EUS(0.0%) is set.

[Fig. 8-6] Alarm operation screen

PID Group

9–1 PID application range setting screen
9–2 General PID application range setting screen
9–3 General PID group setting screen·····88
9–4 Heating · Cooling PID application range setting screen ·······90
9–5 Heating · Cooling PID group setting screen ······92

PID Group flow chart

- General control

[Fig. 9-1] PID application range setting screen #1 3

[Fig. 9-3] PID group setting screen (General) 3

[Fig. 9-2] PID application range setting screen #2

[Fig. 9-3] PID group setting screen (General)

PID Group flow chart

00.00.07

↔ Heating · Cooling control

> PID RANGE				:: M	AIN
FNG.LOW -200.0	REF.HVS 4.7	RNG.HIGH 1370.0	0.0	+	-
1 2	3 4	5	6	CH1	СН
	F.P2 REF.P3 28.0 742.0	REF.P4 1056.0			
CONTROL MODE		TUNING POINT	0.25 %	-	

[Fig. 9-1] PID application range setting screen #1

[Fig. 9-5] PID group setting screen 3

[Fig. 9-4] PID application range setting screen #2 (Heating Cooling)

> HEAT PID V	ALLE		-> 000L PID V	ALUE		:: N	IAIN
Ρ	0.0	*	P	0.0	*		-
1	120	SEC	1	120	SEC	-	-
D	30	SEC	D	30	SEC	CH1	CH2
HEAT OUTPU HIGH LIMIT LOW LIMIT	100.0	-	HIGH LIMIT	100.0			
) OTHER PARA MANUAL RESET		×	DEAD BAND	3.0	*	-	•
						🧿 SI	TUP

2

O SETUP

[Fig. 9-3] PID group setting screen

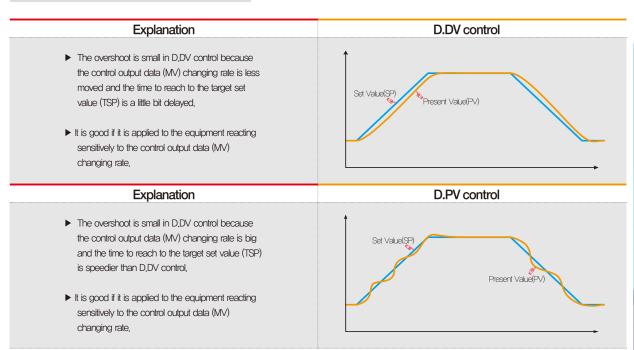


09. PID Group

Explanation with CHI CHI CHI CONTRESPONDED TO TEMP2*20 ONLY (TEMP2*00 series not support this setting)

9-1. PID application range setting screen

- Channel 1 and 2 are composed of 6 PID respectively.
- It is displayed in light yellowish green in the corresponding PID No. in stationary program operation.
- The screen setting for channel 1 and 2 is same.

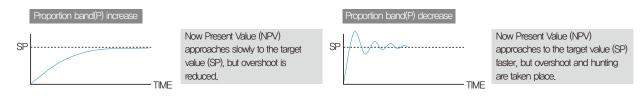


1	Moving to the corresponding PID group setting screen when
U	the number is pressed.
	 Moving to the PID group setting screen when
	Upper limit range.lower limit range : It displays the upper and
2	lower limit range of the sensor.
	Not changeable as it is only for reading
 Image: A start of the start of	Boundary,HYS : Setting the width of hysteresis applied in PID number
(3)	change during operation
	(ZONE PID DECISION Application of HYS in PV selection)
	Deviation,PID : When PV \langle SP – Deviation or PC \rangle SP + Deviation
(4)	Control with PD 6 group (Non operation when deviation PID 0.0 is set.)
ē	Boundary value $1{\sim}4$: Setting the boundary value to divide the PID
(5)	section for entire range (Span)
6	Tuning standard value : Setting the auto tuning point for auto tuning application
7	Moving from current screen to next screen
8	Moving to channel 1 or 2 setting screen
9	Moving to the next and previous screen using up/down button.

Parameter	Setting range	Unit	Initial data
Channel #n boundary value 1	Channel#n,EU(0.0~100.0%) Channel#n,lower limit range≤ Channel#n,looundary value 1(Channel#n,looundary value 2(Channel#n,looundary value 3(Channel#n,looundary value4≤Channel#n upper limit range	Channel#n.EU	Channel#n lower limit range+(Channel#n lower limit range+ Channel#n upper limit range)/5
Channel #n boundary value 2		Channel#n.EU	Channel#n lower limit range+2(Channel#n lower limit range+ Channel#n upper limit range)/5
Channel #n boundary value 3		Channel#n.EU	Channel#n lower limit range+3(Channel#n lower limit range+ Channel#n upper limit range)/5
Channel #n boundary value 4		Channel#n.EU	Channel#n lower limit range+4(Channel#n lower limit range+ Channel#n upper limit range)/5
Channel #n boundary hysteresis value	Channel#n.EUS(0.0 \sim 10.0%)	Channel#n.EUS	Channel#n.EUS(0.3%)
Channel #n deviation value	Channel#n.EUS(0.0 \sim 100.0%)	Channel#n.EUS	Channel#n.EUS(0.0%)
Control method	D.PV, D.DV	ABS	D.PV
Tuning standard value	0.01 ~ 1.00%	%	0.25

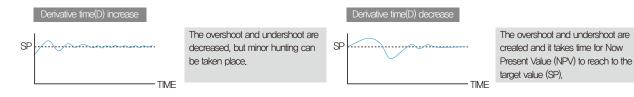
% #n∶1, 2

► Operation example depending on PID control method



• It is recommended for the general user to use D.PV.

Please pay attention because the output volume reduction can be slower in the temperature reduction range in D.DV selection depending on PV change.


▶ Proportion band(P) : It controls to the direction to reduce the deviation between Now Present Value (NPV) and target value (SP)

Integral time(I): It controls to the direction to reduce the residual deviation which can be taken place in proportion(P) control.

Derivative time(D): It controls to the direction to reduce the changing rate of deviation between the Now Present Value (NPV) and target value (SP) in abrupt temperature change.

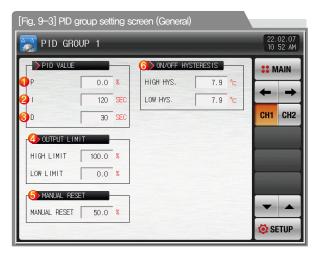
9-2. General PID application range setting screen

- The following screen is the explanation for channel 1 and screen of channel 2 is same with channel 1.
- It is a screen to set the parameters related to the control characteristics in PID control and to copy the time constant between PID groups,

[Fig. 9–2] PID application range setting screen #2 (General)						
CONTROL PROPERT	Y		22.02.07 10 43 AM			
TUNING KEY DISPLAY		URCE	** MAIN			
PID SELECTION MODE	5 PID GROUP NO.	0	← →			
SEG ZONE	CHANNEL	RGET	CH1 CH2			
PV SP	PID GROUP NO.	0				
			O SETUP			

	Setting the Y/N for displaying the auto tuning key in operation screen
1	 Refer to [Fig. 4–7 Stationary operation operation screen #2] and
	[Fig. 4–17 Program operation operation screen #2] in [Operation manual]
2	Setting the pattern to be applied in auto tuning operation.
	Refer to [4–6 Auto tuning] in [Operation manual]
3	Setting the standard in case of using zone PID
4	Setting the original channel to be copied
5	Setting the PID group number to be copied
6	Setting the target channel for copying the original PID
7	Setting the target PID group number to copy the original PID time constant
8	Copy the set PID time constant

References


When the group number for original PID copy is set and executed after putting "0" in the group for PID copy, it is copied to all groups of PID 1∼6.

	Parameter	Setting range	Unit	Initial data
Channel #n Y/N for displaying the tuning key		Hiding, Display	ABS	Display
Ch	annel #n PID selection method	Seg. Zone	ABS	SEG
Chanr	nel #n zone PID selection standard	PV, SP	ABS	PV
	PID copy original channel	CH1, CH2		CH1
Conv	PID copy original group number	1~6		1
Сору	Channel for PID copy	CH1, CH2, CH1 + CH2		CH1
	Group number for PID copy	0~6		1

% #n∶1, 2

9-3. General PID group setting screen

- It is a screen to set the details for each PID group.
- It sets group 1~6 in channel 1 and 2 respectively.
- The screen setting for channel 1 and 2 is same.

References Π

- > OUTPUT LIMIT parameter is displayed only when PID control activated(P≠0)
- ON/OFF HYSTERESIS parameter is displayed only when ON/OFF control activated(P=0)

	Proportion (P) range : It controls to the direction to reduce the deviation
	between Set Value (SP) and Present Value (PV)
	• When the proportional constant is small, the present value (PV) approaches
	to the set value (SP) quickly, but the control output value (MV) is oscillated
1	and it makes bad influence on the stability of control.
	• When the proportional constant is large, the present value (PV) approaches
	to the set value (SP) quickly, but there is a possibility to create the residual deviation.
	ON/OFF control in 0.0% setting
-	Integral time (I): When the integral time becomes longer, the time to approach
	to the set value (SP) is extended as the control output value (MV).
	When the integral time becomes shorter, the time to approach to the set value
2	(SP) is shortened as the control output value (MV) becomes larger.
	• The integral motion removes the residual deviation to be created in P operation.
	The control is impossible when the integral time is too short.
	Derivative (D) time : It prevents the change of deviation (PV-SP) by calculating
3	the control output (MV) corresponding to the deviation (PV-SP) change rate.
9	The approach to the set value (SP) becomes speedier and it prevents
	the abrupt change or external disturbance in present value (PV).
	Output upper limit \cdot lower limit : Setting the upper \cdot lower value of the
(4)	control output operation range
Ð	• It is operated in 0%, 100% output data regardless of the set limit value
	and upper limit for output during auto tuning.
Ē	When the integral time (I) is "0" in PID control, it sets the value to be applied
5	to the integral time item manually in PID calculation.
6	Setting of the upper \cdot lower hysteresis value to be applied in general ON/OFF control

Parameter	Setting range	Unit	Initial data
Channel #n proportional band #m	0.0 (ON/OFF control) 0.1~1000.0%	%	5.0
Channel #n integral time #m	0~6000 sec	ABS	120
Channel #n derivative time #m	0~6000 sec	ABS	30
Channel #n output upper limit #m	0.0~100.0% Channel#n output lower limit #m \langle	%	100.0
Channel #n output lower limit #m	Channel#n output upper limit #m	%	0.0
Channel #n calibration value #m	-5.0~105.0%	%	50.0
Jpper limit hysteresis #m in channel #n ON/OFF control	Channel#n.EUS(0.0~10.0%)	Channel#n.EUS	Channel#n.EUS(0.5%)
ower limit hysteresis #m in channel #n ON/OFF control	Channel#n.EUS(0.0~10.0%)	Channel#n.EUS	Channel#n.EUS(0.5%)

% #n:1~2 % #m:1~6

9-4. Heating · Cooling PID application range setting screen

- The following screen is the explanation for channel 1 and screen of channel 2 is same with channel 1.
- It is a screen to set the parameters related to the control characteristics in PID control and to copy the time constant between PID groups,

[Fig. 9–4] PID application range setting screen #2 (Heating · Cooling)						
Control property	22.02.07 10 43 AM					
TUNING KEY DISPLAY PID COPY SOURCE HIDE @DISPLAY GO CHANNEL CH1	SE MAIN					
PID SELECTION MODE	← →					
SEG ZONE PID COPY TARGET	CH1 CH2 CH1 CH2					
PV SP						
ON/OFF HYSTERESIS MY HYS. 0.5 %						
	SETUP					

1	Setting the Y/N for displaying the auto tuning key in operation screen • Refer to [Fig. 4–7 Stationary operation operation screen #2] and [Fig. 4–17 Program operation operation screen #2] in [Operation manual]
2	Setting the pattern to be applied in auto tuning operation. • Refer to [4–6 Auto tuning] in [Operation manual]
3	Setting the standard in case of using zone PID
4	Setting the hysteresis value to be applied to internal control output value (MV) in Heating \cdot Cooling, ON/OFF control
5	Setting the original channel to be copied
6	Setting the PID group number to be copied
7	Setting the target channel for copying the original PID
8	Setting the target PID group number to copy the original PID time constant
9	Copy the set PID time constant

References

When the group number for original PID copy is set and executed after putting "0" in the group for PID copy, it is copied to all groups of PID 1∼6.

Parameter		Setting range	Unit	Initial data
Channel #n Y/N for displaying the tuning key		Hiding, Display	ABS	Display
Channel #n PID selection method		Seg. Zone	ABS	SEG
Channel #n Zone PID selection standard		PV, SP	ABS	PV
Channel #n HYS in ON/OFF control		Channel #n.EUS(0.0~10.0%)	Channel#n.EUS	Channel#n.EUS(0.5%)
	PID copy original channel	CH1, CH2		CH1
Com	PID copy original group number	1~6		1
Сору	Channel for PID copy	CH1, CH2, CH1 + CH2		CH1
	Group number for PID copy	0~6		1

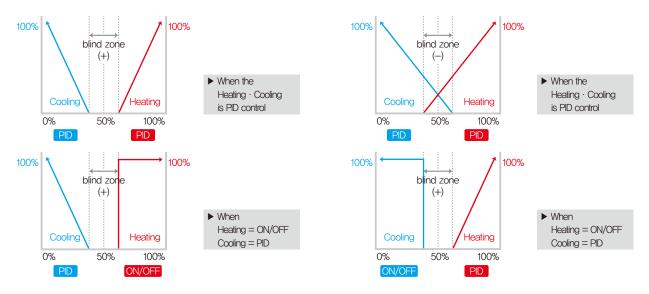
% #n∶1, 2

9-5. Heating · Cooling PID group setting screen

- It is a screen to set the details for each PID group.
- PID group sets group 1~6 in channel 1 and 2 respectively.
- The screen setting for channel 1 and 2 is same.

[F	[Fig. 9–5] PID group setting screen (Heating · Cooling)							
	FID GROUP 1						02.07 52 AM	
Γ	→ HEAT PID VA	LUE		COOL PID V	ALUE		:: M	AIN
1	P	0.0	%	1 P	0.0	%		
2	ı [120	SEC	2	120	SEC	-	-
6	D	30	SEC	3 D	30	SEC	CH1	CH2
	4) HEAT OUTPUT	LIMIT		COOL OUTPU	TLIMIT			
	HIGH LIMIT [100.0	%	HIGH LIMIT	100.0	%		
	LOW LIMIT	0.0	%	LOW LIMIT	0.0	%		
) OTHER PARAM	ETER						
6	MANUAL RESET	50.0	%	6 DEAD BAND	3.0	%	-	
							🧔 SE	TUP

E References


- HEAT OUTPUT LIMIT parameter runs 100,0% fixed when HEAT side ON/OFF control (P=0)
- COOL OUTPUT LIMIT parameter runs 100.0% fixed when COOL side ON/OFF control (P=0)

	Proportion (P) range: It controls to the direction to reduce the deviation
1	between Set Value (SP) and Present Value (PV)
	When the proportional constant is small, the present value (PV) approaches
	to the set value (SP) quickly, but the control output value (MV) is oscillated
	and it makes bad influence on the stability of control.
	${\scriptstyle \bullet}$ When the proportional constant is large, the present value (PV) approaches
	to the set value (SP) quickly, but there is a possibility to create the residual deviation.
	ON/OFF control in 0.0% setting
	Integral time (1): When the integral time becomes longer, the time to approach
	to the set value (SP) is extended as the control output value (MV). When the
2	integral time becomes shorter, the time to approach to the set value (SP) is
C	shortened as the control output value (MV) becomes larger.
	The integral motion removes the residual deviation to be created in P operation,
	 The control is impossible when the integral time is too short.
	Derivative (D) time: It prevents the change of deviation (PV-SP) by calculating
3	the control output (MV) corresponding to the deviation (PV-SP) change rate.
9	 The approach to the set value (SP) becomes speedier and it prevents
	the abrupt change or external disturbance in present value (PV).
	Output upper limit \cdot lower limit: Setting the upper limit value of the Heating
4	and Cooling in output operation range
ē	When the integral time(I) is "0" in PID control, it sets the value to be applied to
5	the integral time item manually in PID calculation.
୍	Setting of the dead zone for Heating and Cooling output volume depending
6	on the internal control output value (MV) in Heating · Cooling

N

Parameter	Setting range	Unit	Initial data
Channel #n proportional band #m	0.0 (ON/OFF control) 0.1~1000.0%	%	5.0
Channel #n integral time #m	0~6000 sec	ABS	120
Channel #n derivative time #m	0~6000 sec	ABS	30
Channel #n output upper limit #m	0.0~100.0%	%	100.0
Channel #n deviation calibration value #m	-5.0~105.0%	%	50.0
Channel #n dead zone #m	-100.0~15.0%	%	3.0

* #n:1~2 * #m:1~6

^{Part}**1**0

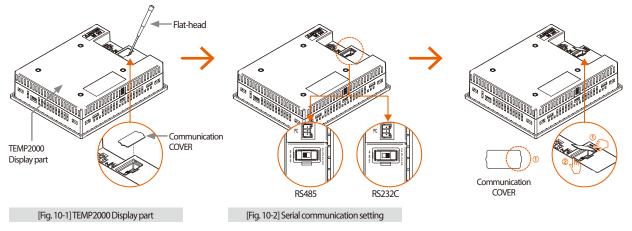
Setting communication environment

10-1 RS232C/485 Communication setting	96
10-2 Communication environment setting screen ······	97
10-3 SYNC operation setting screen	99
10-4 Ethernet communication environment setting screen ···································	00

Communication flow chart

[Fig. 10–3] Communication environment setting screen (RS232C/485)

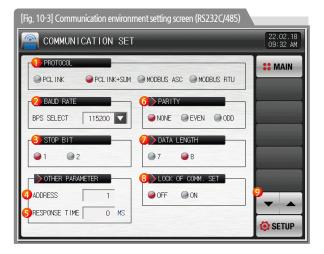
[Fig. 10-5] Communication selection #1 in screen 2



10. Setting communication environment

10-1.RS232C/485 Communication setting

- •When TEMP2000 is RS232C/485 communication is provided basically.
- It was set in RS232C at the delivery from the factory.
- The necessity of changing into RS485 is shown as follows.
 - ① To disassemble the cover, Insert and push into the right side crack on communication part with small driver from [Fig 10-1 TEMP2000 display part]
 - O RS232C move to RS485 from [Fig. 10-2 Serial communication setting].


③ Finally, insert the wide protrusion (①) of the communication cover into the groove on the "RS232C" side and push the opposite side to close the cover.

SANKION

10-2. Communication environment setting screen

• It is a screen to set the communication conditions such as communication protocol and speed.

1	Setting the communication
	Setting the communication speed
2	 Refer to [Communication speed setting screen in
	[Fig. 10-4 in communication environment]
3	Setting the stop beat
	Setting the communication address
4	 In case of RS485 communication, it can be used by defining
	address differently up to maximum 99
5	Setting the response time
	Setting the parity
6	NONE: No parity
U	• EVEN: Even number parity
	ODD: Odd number parity
	Setting the data length
	• The data length is fixed in 7, when communication protocol is set
Ø	in MODBUS ASC.
	 The data length is fixed in 8, when communication protocol is set
	in MODBUS RTU.
8	Set communication setting lock
9	Moving to the next and previous screen using up/down button.

	ON SET			20.09.07 02 54 PM
PROTOCOL	# MAIN			
BAUD RATE		PARIT	Y	
BPS SELECT 115	200	9600	VEVEN ODD	
STOP BIT		19200	ENGTH	
OTHER PARAMETER		38400	COMM. SET	
ADDRESS	1	57600	@ 0N	T
RESPONSE TIME	0 MS -	115200]	🔅 SETUP

[Fig. 10-4] Communication speed setting screen in communication environment

Parameter	Setting range	Unit	Initial data
Communication protocol	PC LINK, PC LINK + SUM, MODBUS ASC, MODBUS RTU	ABS	PC LINK + SUM
Communication speed	9600, 19200, 38400, 57600, 115200	ABS	9600
Stop beat	1,2	ABS	1
Communication address	1~99	ABS	1
Response time	0~10	ABS	0
Parity	NONE, EVEN, ODD	ABS	NONE
Data length	7,8	ABS	8
Lock of communication set	OFF, ON	ABS	OFF

10-3. SYNC Communication environment setting screen

• It is a screen to set the parameter to SYNC (Synchronization) operate the set value (SP) with the sub device with the master device of TEMP2520

[Fig. 10–5] Communication selection #1 in screen 2					
🔗 SYNC RUNNING SET	22.02.07 04 40 PM				
PROTOCOL POLINK POLINK+SUM MODEUS ASC MODEUS RTU	** MAIN				
BALD RATE BPS SELECT 9600 V OR OVER 000					
► STOP BIT ● 1 ● 2 ● 2 ● 3 ● 3 ● 3 ● 3 ● 3 ● 3 ● 3 ● 3					
SINC MASTER UNUSE OCH1 OCH2	T				
	🧔 SETUP				

1	Setting the SYNC communication speed	
	Setting the operation master	
	Unuse: No use of the SYNC operation	
2	CH1: SYNC operation with sub device at set value (SP) of channel 1	
	CH2: SYNC operation with sub device at set value (SP) of channel 2	
	Setting the object to send by communication to sub device at the program stop	
	IN.RL: Transmitting the lower limit data of the master channel for sensor input	
3	NSP : Transmitting the set value (SP) of the master channel	
	In case of program stop, set value (SP) = present value (PV)	104

[Fig. 10-6] Communication selection #2 in screen 2

Parameter	Setting range	Unit	Initial data
SYNC communication speed	9600, 19200, 38400, 57600, 115200	ABS	9600
SYNC operation master	Unuse, CH1, CH2	ABS	Unuse
SYNC setting value in stop	IN.RL, NSP	ABS	IN,RL

10-4. Ethernet communication environment setting screen

• It is a screen to set the parameter for Ethernet communication (TCP/IP).

[Fig. 10–7] Ethernet DHCP no use screen					
	TION SE	T			22.02.07 05:12 PM
DHCP FUNCTION UNUSE UNUSE USE		3 L00	CK OF COMM. : ◯ON	SET	** MAIN
IP ADDRESS SUBNET MASK GATEWAY	0.	168 . 255 . 168 .	0.	100 0 1	
	ETI	ERNET PARAM	ETER APPLY		🔅 SETUP

- ① Setting Y/N for Ethernet communication use
- ② Setting Y/N for IP auto setting use in network
- ③ Manual setting of network IP
- ④ Use to apply the changed conditions of Ethernet related parameters

• The parameters are not changed when *LAPPLY* button is not pressed after changing the network setting.

COMMUNICATION SET	22.02.07 05.20 PM
CHCP FUNCTION	** MAIN
NETWORK SET IP ADDRESS 0 168 0 100 SLENET MASK 255 255 0	
GATEWAY 192 168 0 1	
	T
	O SETUP

[Fig. 10-6] Ethernet DHCP use screen

E References				
<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	Message box			
► ETHERNET PARAMETER APPLY : Ethernet normal operation				
ETHERNET COMM. READY	: Ready for Ethernet			
NET ADDRESS ERROR	: Incorrect net address			
CONNECTION ERROR	: No connection of Ethernet cable or in failure			
DHCP FAIL	: Ethernet communication error			

References

- RS232C/485 communication is provided as a basic and RS232C/485 communication is not usable in case of using Ethernet option.
- The serial communication using RS232C/485 is not available in case of Ethernet communication selection
- When DHCP is not used in Ethernet setting, it can be used when IP address, subnet mask, gateway are set, Refer to [Fig. 10–7 Ethernet DHCP no use screen]
- Network setting is made automatically when DHCP is used in Ethernet setting, Refer to [Fig. 10-8 Ethernet DHCP use screen]

DO relay output

11–1 Relay No. and parameter	setting ······10
11–2 UP, SOAK, DOWN signal	operation · · · · · · · · · · · · · · · · · · ·

DO relay output flow chart

IS&TS				> INVER SIGNA
	0	IS9 RELAY	0	IST RELAY
- ALARM	0	ISTO RELAY	0	IS2 RELAY
On/Off	0	IS11 RELAY	0	ISS RELAY
DI	0	IS12 RELAY	0	IS4 RELAY
Logic	0	IS13 RELAY	0	ISS RELAY
	0	IS14 RELAY	0	ISS RELAY
Manua	0	IS15 RELAY	0	IS7 RELAY
CH1 Slope	0	IS16 RELAY	0	IS8 RELAY

ALARM SIGNAL				1	IS&
AL1 RELAY	0	ALS RELAY	0		ALA
AL2 RELAY	0	ALG RELAY	0		ALA
ALS RELAY	0	ALT RELAY	0		On/
AL4 RELAY	0	ALB RELAY	0		D
SEG ALARN SIG	64.				Loc
SEG AL1 RELAY	0	SEG ALS RELAY	0		
SEG AL2 RELAY	0	SEG AL4 RELAY	0		Man
				CH1	Slo

[Fig. 11-1] Inner signal relay setting screen

[Fig. 11-2] Time signal/Alarm signal/User key signal relay setting screen

TI RE AY	0	DELAY TIME	00.00 8.5	
T2 RELAY	0	DELAY TIME	2.M 00.00	4
TS RELAY	0	DELAY TIME	00.00 M.S	(
T4 FELAY	0	DELAY TIME	00.00 M.S	
T5 RELAY	0	DELAY TIME	2.M 00.00	
TE RELAY	0	DELAY TIME	00.00 M.S	-
T7 RELAY	0	DELAY TINE	2.M 00.00	CH1

[Fig. 11-3] Temp ON/OFF signal relay setting screen

DI SIGNAL				ISA
DIT RELAY	0	DIS RELAY	0	44
D12 RELAY	0	DI 10 RELAY	0	ALA
DIS RELAY	0	DITT RELAY	0	01
DI4 RELAY	0	DI 12 RELAY	0	C
DIS RELAY	0	DI 13 RELAY	0	Lo
DIG RELAY	0	DI 14 PELAY	0	10
DI7 RELAY	0	DI 15 RELAY	0	Mau
DIS RELAY	0	DI 16 RELAY	0	SIG

[Fig.11-5] DI signal relay setting screen

IS&T.				LOGICAL SIGNA
^	0	LOGICS RELAY	0	LOGICI RELAY
- ALAR	0	LOGICIO RELAY	0	LOGIC2 RELAY
0n/0	0	LOGICI1 RELAY	0	LOGICS RELAY
DI	0	LOGIC12 RELAY	0	LOGICA RELAY
Logie	0	LOGIC13 RELAY	0	LOGICS RELAY
	0	LOGIC14 RELAY	0	LOGICS RELAY
Manu	0	LOGICIS RELAY	0	LOGIC7 RELAY
Slop	0	LOGIC16 RELAY	0	LOGIC8 RELAY

[Fig.11-6] Logic signal relay setting screen#1

MANT RELAY	0	MWN7 RELA		0	A
MAN2 RELAY	0	MANB RELA	-	0	0
MANS RELAY	0	MWN8 RELA		0	
MAN4 RELAY	0	NW10 REL		0	
MANS RELAY	0	MAN11 REL		0	4
MANG RELAY	0	MWN12 REL	AY	0	M
MANI MAN	2 MANS		-	-	

[Fig.11-7] Manual signal relay setting screen

UP BELAY	0.0 10000000000000000000000000000000000	IS&TS
	0 KEEP TIME 00.00 M.S	ALARI
DOWN RELAY	0 0.0 %	On/Of
		DI
		Logic
		CH1

[Fig.11-8] Up/soak/down signal relay setting screen

[Fig.11-9] Sub output relay setting screen #1

DO relay output flow chart

Flow chart

IS&TS			_	> INNER SIGNAL
States and states	0	IS9 RELAY	0	IS1 RELAY
-	0	IS10 RELAY	0	IS2 RELAY
On/01	0	IS11 RELAY	0	IS3 RELAY
DI	0	IS12 RELAY	0	IS4 RELAY
Logic	0	IS13 RELAY	0	ISS RELAY
Logic	0	IS14 RELAY	0	IS6 RELAY
Manu	0	IS15 RELAY	0	IS7 RELAY
CH1 Slope	0	IS16 RELAY	0	IS8 RELAY

[Fig. 11-1] Inner signal relay setting screen #1

[Fig.11-9] Sub output relay setting scree #1

22.02.08 09 43 AM	• 🗰 🗄	N	GURATIO	D0 CONFI
IS&TS				TIME SIGNAL
	0	TS5 RELAY	0	TS1 RELAY
ALARM	0	TS6 RELAY	0	TS2 RELAY
On/Off	0	TS7 RELAY	0	TS3 RELAY
DI	0	TSB RELAY	0	TS4 RELAY
Logic			-	
Manual				
Slope				
Etc.	"			

[Fig. 11-2] Inner signal relay setting screen #2

[Fig.11-10] Sub output relay setting scree #2

[Fig.11-11] Sub output relay setting scree #3

11. DO relay output

Explanation with CHI CHI2 corresponds to TEMP2*20 ONLY (TEMP2*00 series not support this setting)

11-1. Relay No. and parameter setting

- When various states created during operation are output to the I/O relay board, the relay number for the corresponding state is set.
- The relay operates ("OR" condition) when any signal out of the set signals is output when the set relay number is overlapped.
- Relay number 13~32 can be used when I/O2 board option is added.
- Relay No, 33 ~ 56 can be used when TIO2000-B is additionally connected. (After connecting TIO2000-B, change the DO option in 'System initial setting')
- The screen setting for channel 1 and 2 is same.

(1) Inner signal/time signal relay setting screen

- It is a screen to set the relay number for the inner signal and time signal in channel 1 and 2 respectively.
- It sends the contact output to the set relay when inner signal and time signal are created,

[Fig. 11–1] Inner s	signal/time	e signal relay setti	ng screen #1		
DO CONFI	GURAT I O	N	2 <mark>0</mark> 8		22.02.08 09 43 AM
				4	IS&TS
IS1 RELAY	0	IS9 RELAY	0		
IS2 RELAY	0	IS10 RELAY	0	-	ALARM
IS3 RELAY	0	IS11 RELAY	0		On/Off
IS4 RELAY	0	IS12 RELAY	0		DI
IS5 RELAY	0	IS13 RELAY	0		Logic
IS6 RELAY	0	IS14 RELAY	0		LUGIC
IS7 RELAY	0	IS15 RELAY	0	6	Manual
IS8 RELAY	0	IS16 RELAY	0	CH1	Slope
				CH2	Etc.
					110.

[F	-īg. 11—2] Inner	signal/time	e signal relay seti	ting screen #2	2	
	DO CONFI	GURATIO	N	‡		22.02.08 09 43 AM
Γ	TIME SIGNAL					IS&TS
	TS1 RELAY	0	TS5 RELAY	0		
	TS2 RELAY	0	TS6 RELAY	0	-	ALARM
	TS3 RELAY	0	TS7 RELAY	0		On/Off
	TS4 RELAY	0	TS8 RELAY	0		DI
						Logic
					_	Manual
					CH1	Slope
					CH2	Etc.

	Setting the relay number of inner signal	Parameter	Setting range	Unit	Initial data
1	• Channel 1 : IS1~IS16 Channel 2: IS17~IS32	Channel1 Time signal#n/ Channel2 Time signal#m	0~56	ABS	0
2	Move to [Fig. 2–3 System parameter setting screen]	Channel1 Time signal#k/	0~56	ABS	0
3	Move to [Fig. 2–1 Main screen]	Channel2 Time signal#k	0~30	ABS	U
4	Moving from current screen to the next screen	% #n ∶1 ~ 16 % #m∶17 ~ 32			
(5)	Moving to the set screen in channel 1 or 2	× #k ∶1~8			
6	Setting the relay number of time signal • Channel 1 : TS1~TS8 Channel 2 : TS1~TS8				

NOMINS

(2) Alarm signal/SEG alarm signal relay setting screen

- It is a screen to set the relay number for the inner signal and time signal in channel 1 and 2 respectively.
- It transmits the contact point output to the set relay when inner signal and time signal are created,

[Fig.	[Fig. 11–3] Alarm signal/SEG alarm signal relay setting screen					
	D0 CONFI	GURAT I O	N			22.02.08 09 43 AM
0	ALARM SIGNAL	_				IS&TS
A	L1 RELAY	0	AL5 RELAY	0		ALARM
A	L2 RELAY	0	AL6 RELAY	0		ALARINI
A	L3 RELAY	0	AL7 RELAY	0		On/Off
A	L4 RELAY	0	AL8 RELAY	0		DI
2	SEG ALARM SI	IGNAL]	Logic
SI	EG AL1 RELAY	0	SEG AL3 RELAY	0		Manual
S	EG AL2 RELAY	0	SEG AL4 RELAY	0	CH1	IManual
						Slope
					CH2	Etc.

-	Setting the relay number of alarm signal
(1)	Channel 1 : AL1~AL8 / Channel 2: AL9~AL16
	Setting the relay number of SEG alarm signal
2	Channel 1 : SEG AL1~SEG AL4 / Channel 2: SEG AL1~SEG AL4

Parameter	Setting range	Unit	Initial data	
Channel1 Alarm signal#n/	0- 50	ΔRS	<u>^</u>	
Channel2 Alarm signal#m	0℃~00	ABS	0	
Channel1 SEG alarm#k/	0 50	450	<u>^</u>	
Channel2 SEG alarml#m	0~56	ABS	U	

% #n:1~8 % #m:9~16 % #k:1~4

SANKION

(3) ON/OFF signal relay setting screen

- It sets the relay number for ON/OFF signal and delay time for each ON/OFF signal.
- ON/OFF signal transmits the actual contact output after elapsing the set time for delay when the signal creation condition is made.

[F	ig. 11-4] ON/C)FF signal r	elay setting scr	een			
	D0 CONF	IGURATIO	N	Ę			22.02.08 09:43 AM
	ON/OFF SIGN	IAL					IS&TS
	T1 RELAY	0	DELAY TIME	00.00	M.S		ALADAL
	T2 RELAY	0	DELAY TIME	00.00	M.S		ALARM
	T3 RELAY	0	DELAY TIME	00.00	M.S		On/Off
	T4 RELAY	0	DELAY TIME	00.00	M.S		DI
	T5 RELAY	0	DELAY TIME	00.00	M.S		Logic
	T6 RELAY	0	DELAY TIME	00.00	M.S		LUGIC
	T7 RELAY	0	DELAY TIME	00.00	M.S		Manual
						CH1	Slope
						CH2	Etc.

Setting the relay number of ON/OFF signal and delay time

- The set relay is "ON" after elapsing the set relay time
 - Delay time: Setting of delay time to be applied in ON/OFF signal operation

Parameter	Setting range	Unit	Initial data	
Channel1 ON/OFF signal #n/	0- 50	ARS	0	
Channel2 ON/OFF signal#m	/OFF signal#m		U	
Channel1 ON/OFF signal#n delay time/	00.00~99.59		00.00	
Channel2 ON/OFF signal#m delay time	(MIN.SEC)	ABS	00,00	

% #n:1~7 % #m:8~14

References

- ▶ T7 operation: It operates after T6 operation and T7 delay time.
- > T14 operation: It operates after T13 operation and T14 delay time.

(4) DI signal relay setting screen

- It is a screen to set the relay number for DI signal.
- DI signal transmits the set actual contact point output in DI error creation for corresponding number.

[F	ig. 11–5] DI sig	inal relay s	etting screen		
	D0 CONF	IGURATIO	N	‡ ::	22.02.08 09:44 AM
	🕕 DI SIGNAL				IS&TS
	DI1 RELAY	0	DI9 RELAY	0	
	D12 RELAY	0	DI 10 RELAY	0	ALARM
	DI3 RELAY	0	DI11 RELAY	0	On/Off
	DI4 RELAY	0	DI12 RELAY	0	DI
	DI5 RELAY	0	DI13 RELAY	0	Logic
	DIG RELAY	0	DI14 RELAY	0	Logic
	DI7 RELAY	0	DI15 RELAY	0	Manual
	D18 RELAY	0	DI16 RELAY	0	Slope
					Etc.

Setting the relay number of DI signal (D1~D16)
• DI signal operates when the operation method is set in "Error" in [12–2 DI error name]

Parameter	Setting range	Unit	Initial data
DI signal $1 \sim$ DI signal 16 relay	00,56	ADC	0
(DI58 Option : DIsignal1 \sim DIsignal58)	0.50	ADO	U

(5) Logic signal relay setting screen

- It is a screen to set the logic relay signal.
- The logic signal can be set up to 32.

[Fig.11-6] Logic	signal rela	y setting screen		
D0 CONFI	GURATIC	N		22.02.08 09:44 AM
LOGICAL SIG	NAL			IS&TS
LOGIC1 RELAY	0	LOGIC9 RELAY	0	
LOGIC2 RELAY	0	LOGIC10 RELAY	0	
LOGIC3 RELAY	0	LOGIC11 RELAY	0	On/Off
LOGIC4 RELAY	0	LOGIC12 RELAY	0	DI
LOGIC5 RELAY	0	LOGIC13 RELAY	0	Logic
LOGIC6 RELAY	0	LOGIC14 RELAY	0	Logic
LOGIC7 RELAY	0	LOGIC15 RELAY	0	Manual
LOGIC8 RELAY	0	LOGIC16 RELAY	0	Slope
				Etc.
LOGIC4 RELAY LOGIC5 RELAY LOGIC6 RELAY LOGIC7 RELAY	0 0 0 0 0 0	LOGIC12 RELAY LOGIC13 RELAY LOGIC14 RELAY LOGIC15 RELAY	0 0 0 0 0 0	Logic Manua Slope

(1) Setting the relay number of logic signal

Parameter	Setting range	Unit	Initial data
Logic relay1 ~Logic relay 32	0~56	ABS	0

SUMMON

(6) Manual signal relay setting screen

- It is a screen to set the relay number for manual signal.
- It is used to transmit a certain relay manually.

[F	ig. 11-7]	Manual	signal re	lay setting	g screen		
	DO C	ONFIGU	RATION			-	 22.02.08 09:44 AM
	1 MANUAL	SIGNAL					IS&TS
	MAN1 RELA	Y	0	MAN7 REL	AY	0	
	MAN2 RELA	Y	0	MAN8 REL	AY	0	ALARM
	MAN3 RELA	Y	0	MAN9 REL	AY	0	On/Off
	MAN4 RELA	Y	0	MAN10 RE	LAY	0	DI
	MAN5 RELA	Y	0	MAN11 RE	LAY	0	Logia
	MANG RELA	Y	0	MAN12 RE	LAY	0	Logic
2		_	-				Manual
	MAN1	MAN2	MAN3	MAN4	MAN5	MANG	Slope
	MAN7	MAN8	MAN9	MAN10	MAN11	MAN12	Etc.

1	Setting the relay number of manual signal (Manual1~Manual12)
	Switch "ON" the relay for the corresponding number manually.
2	• Key operation: The output of relay "5" is "ON" when "Manual 1"
	button is pressed after inputting "5" on the "Manual1" relay column.

Parameter	Setting range	Unit	Initial data
Manual signal 1 ~ Manual signal 12 relay	0~56	ABS	0

DO CONFI	GURATIO	N	ι. Ω		22.02.0 09 44 A
->SLOPE SIGNAL					IS&TS
UP RELAY	0	👆 i TSP - NSP i	0.0 °	-	
SOAK RELAY	0	KEEP TIME	00.00	1.S	ALARI
DOWN RELAY	0	🖢 itsp - NSPT	0.0	c	On/Of
					DI
					Logic
					Logic
				_	Manua
				CH1	Slope
				CH2	Etc.

	Up relay	: Setting the relay number of up signal
	Down relay	: Setting the relay number of down signal
	Operation condition	: Setting the operation condition of up and down
U		signal 🖑 ITSP - NSPT and 🖑 ITSP - NPVT
	Application deviation	: Setting the application deviation in operation of
		up and down signal

- * ITSP NSPI operation
- Up signa I : The relay is "ON" in up range when the Now set value (NSP) (|Target set value (TSP) – Applied deviation|, and it is "OFF" when the set value (SP)
) |Target set value (TSP) – Applied deviation|
- Down signal : The relay is "ON" in down range when the Now set value (NSP) > |Target set value (TSP) + Applied deviation|, and it is "OFF" when the set value (SP)
 (|Target set value (TSP) + Applied deviation|
- Even |TSP-NSP| is set in stationary operation, it operates in |TSP-NPV|
 *
 **
 TSP NPV
 operation
 - Up signal : The relay is "ON" in up range when the Now Present Value (NPV) (|Target set value (TSP) – Applied deviation|, and it is "OFF" when the Now Present Value (NPV)) [Target set value (TSP)– Applied deviation]
 - Down signal : The relay is "ON" in down range when the Now Present Value (NPV) > |Target set value (TSP) + Applied deviation|, and it is "OFF" when Now Present Value (NPV) |Target set value (TSP) + Applied deviation|
 - Keeping relay
 : Setting the relay number of the keeping signal

 Holding Time
 : Setting the Holding Time to be maintained during the keeping signal operation
- (2) The keeping relay is "ON" when it is entered into the keeping range while it is in the Program operation. Plus, In case of "[Keeping SEG operation time=Keeping SEG setting time – Holding Time]," the relay is "OFF."

117

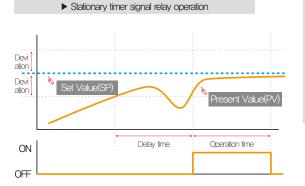
• The state lamp is displayed in the operation screen in the Stationary Operation and the relay output is not created, #

DO relay output

SUMMON

파라메터	설정범위	단위	초기값
Channel #n Up signal relay	0~56	ABS	0
Channel #n Up signal deviation	Channel #n.EUS(0.0~10.0%)	Channel #n.EUS	Channel #n.EUS(0.0%)
Channel #n Keeping signal relay	0~56	ABS	0
Channel #n Signal Holding Time	00.00~99,59(MIN,SEC)	ABS	00.00
Channel #n Down signal relay	0~56	ABS	0
Channel #n Down signal deviation	Channel #n.EUS(0.0~10.0%)	Channel #n.EUS	Channel #n.EUS(0.0%)

% #n∶1~2


(7) Sub output relay setting screen

- It is a screen to set the sub output relay signal.
- It transmits the contact point output to the set sub output relay when sub output signal is created,

[Fig. 11–9] Sub ou	utput relay s	setting scree	n #1	
DO CONFIC	GURATION		‡ ::	22.02.08 09:45 AM
RUN SIGNAL				IS&TS
RUN RELAY	0	DELAY TIME	00.00 M.S	ALARM
S.OPN RELAY	STGNAL 0	KEEP TIME	00.00 M.S	On/Off
3 WAIT SIGNAL			-	DI
WAIT RELAY	0	KEEP TIME	00.00 M.S	Logic
	GNAL			Manual
TIMER RELAY	0	DEVIATION		CH1 Slope
DELAY TIME	00.00 H.M	OPER. TIME	00.00 M.S	Etc.

	Setting the operation(RUN) signal relay and delay time	
(1)	Operation relay : The set relay is "ON" in stationary or program operation	
	Delay time : The set relay is "ON" after set delay time is elapsed.	
	Setting the sensor short relay and Holding Time	
0	 Short relay : When the sensor is short, the set relay is "ON" 	
2	• Holding Time : The relay is "ON" during the set Holding Time and	
	the operating state is maintained later on when the sensor is short.	
	Setting the wait signal relay and Holding Time	
0	• Standby relay : The set relay is "ON" during standby in program operation	
3	• Holding Time : The relay is "ON" during the set Holding Time and the operating	
	state is maintained later on depending on the standby operation condition.	
	Setting the stationary timer signal relay, deviation, delay time and operation time	
	• Deviation : Present value(PV) – Set value (SP) \leq the relay is	
	"ON" during operation time (M.S) from deviation till delay time (H.M)	;
	Namely, the relay is "ON" during operation time (M.S) when the data	8
	of Present value(PV) - Set value (SP) is within the deviation.	rela
4	• Delay time : The set relay is "ON" after the set delay time is elapsed.	2 Q
	• Operation time : The set relay is "OFF" after the set operation time elapse	11. DO relay output
	when the stationary timer signal relay operation state is maintained.	
	Operation only in stationary operation	
	• Stop or operation time = The relay is "OFF" when 00.00 M.S is input	
	• The processing time is continued out of the deviation during relay time operation,	

SVINDION

References

The stationary timer signal operation is calculated again in operation starting, changing the set value (SP), electric power "ON" (When it is set for immediate operation in electricity "ON", recovery operation in black out or product is ON. When the recovery motion is re-starting or continue in black out, it operates in same pattern.Namely, the delay time starts again after recover of electric power in operation state

Parameter	Setting range	Unit	Initial data
Channel #n Operation signal relay	0~56	ABS	0
Channel #n Operation signal delay time	00.00~99.59(MIN.SEC)	ABS	00.00
Channel #n Sensor short signal relay	0~56	ABS	0
Channel #n Sensor short signal Holding Time	00.00~99.59(MIN.SEC)	ABS	00.00
Channel #n Standby signal relay	0~56	ABS	0
Channel #n Standby signal Holding Time	00.00~99.59(MIN.SEC)	ABS	00.00
Channel #n Stationary timer signal relay	0~56	ABS	0
Channel #n Stationary timer signal deviation	EUS (0.0 \sim 10.0%)	EUS	EUS (0.5%)
Channel #n Stationary timer signal delay time	00.00~99.59(HOUR.MIN)	ABS	00.00
Channel #n Stationary timer signal operation time	00.00~99.59(MIN.SEC)	ABS	00.00

∦m:1~2

I		
	-	
	2	
	г	
	2	5
	È	ζ
	0)
	۵	2
ľ	<	5
	c	2
	Ē	1
ł	-	÷
	t	2
	c	
	F	÷

00.00

0

[Hg, 11-10] Sub output relay setting screen #2 D0 CONFIGURATION Image: D0 CONFIGURATION		1. REF relay : Setting the 1st freezer signal relay number 2. REF relay : Setting the 2nd freezer signal relay number Delay time : Setting the delay time to be applied in the	
I.REF RELAY 0 DELAY TIME 00.00 M.S ALARM	1	 The signals are operating. The signals in the 1st and the 2nd freezer are "ON" after op of inner signal (51) and set delay time is elapsed. 	
2. FEF RELAY 0 DELAY TIME 00.00 M.S 2. EFROR SIGNAL ERROR RELAY 0 KEEP TIME 00.00 M.S 3. USER KEY SIGNAL U-KEY RELAY 0 OPER. TIME 00.00 M.S	2	 Error relay : Setting the error signal relay number Holding Time : Setting the Holding Time to be applied in eroperation The relay is "ON" until error recovery when the DI error is bafter the error signal relay is "ON" after maintaining time d maintaining time in DI error creation. Error signal : It is operated when error is created in channel DI1~ When DI sensing is set in "Operation", the error signal output 	
CH1 Slope CH2 Etc. ** The channel 1 in operation relay of the 1st and 2nd freezer is ON after inner signal (IS1) is output and the defined (Min, Sec) time is elapsed, in case of channel 2, it is	3	Setting the user button relay • Y/N for use of the button is set in [14. System initial setting • When the user button is set, the user can use the wanted in [11. DO relay output] and the set relay is operated when the screen for stationary, program stop/operation and the button is displayed on the operation screen.	

[Fig. 11-10] Sub output roles cotting coroon #2

Channel #n Error ignal Holding Time

User output button relay

	0.00 M.S ALARM	1	 Delay time : Setting the delay time freezer signals are operating. The signals in the 1st and the 2nd of inner signal (S1) and set delay to 	e to be applied in the 1st and the 2nd I freezer are "ON" after operation
EFROR STIGNAL ERROR RELAY O KEEP TIME O	0.00 M.S On/Off D.00 M.S DI Logic Manual	2	after the error signal relay is "ON" maintaining time in DI error creat • Error signal : It is operated when erro	Time to be applied in error signal ery when the DI error is being created after maintaining time during the set
* The channel 1 in operation relay of the 1st and 2nd (IS1) is output and the defined (Min, Sec) time is ela ON after the inner signal (IS9) is output and the defi	psed,in case of channel 2, it is	3	in [11. DO relay output] and the s	user can use the wanted relay by setting et relay is operated when is pressed at n stop/operation and the corresponding
Parameter	Setting rang	10.	Unit	Initial data
Channel #n the 1st Freezer operation signal relay	0~56	,0	ABS	0
Channel #n the 1st Freezer operation signal delay time	00.00~99.59(MIN.S	EC)	ABS	00.00
Channel #n the 2nd Freezer operation signal relay	0~56		ABS	0
Channel #n the 2nd Freezer operation signal delay time	00.00~99.59(MIN.S	SEC)	ABS	00.00
Channel #n Error signal relay	0~56		ABS	0

ABS

ABS

* #n:1~2

00.00~99.59(MIN.SEC)

0~56

[Fig. 11–11] Sub	[Fig. 11–11] Sub output relay setting screen #3							
DO CONF	IGURAT	ION				Å [22.02.08 09:45 AM
END SIGNAL							-	IS&TS
FIX RELAY	0							
DELAY TIME	00.00	M.S	OPER. TIME	Г	00.00	M.S	•	ALARM
PROG RELAY	0						-	On/Off
DELAY TIME	00.00	M.S	OPER. TIME	Г	00.00	M.S		DI
								Logic
							_	Manual
							CH1	Slope
							CH2	Etc.

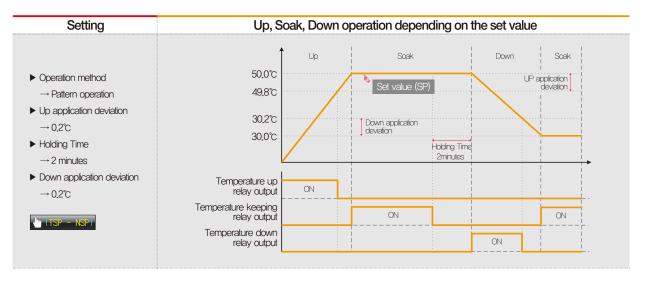
Setting the stationary operation, program operation termination relay and delay time operation time

- FIX relay
 : The set relay is "ON" when the stationary time set
 operation is terminated,
- PROG relay : The set relay is "ON" when the program operation is terminated.
 - Delay time : The set relay is "ON" when the set delay time is passed.

 Operation time : The relay is "OFF" when the stationary or program termination signal relay is "ON" after the set operation time is passed.

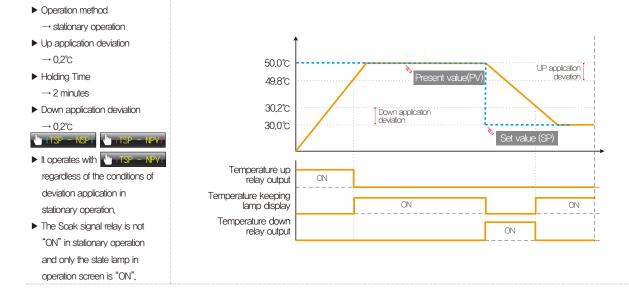
Parameter	Setting range	Unit	Initial data
Channel #n Stationary control termination signal relay	0~56	ABS	0
Channel #n Stationary control termination signal delay time	00.00~99.59(MIN.SEC)	ABS	00.00
Channel #n Stationary control termination signal operation time	00.00~99.59(MIN.SEC)	ABS	0
Channel #n Program control termination signal relay	0~56	ABS	00.00
Channel #n Program control termination signal delay time	00.00~99.59(MIN.SEC)	ABS	00.00
Channel #n Program control termination signal operation time	00.00~99.59(MIN.SEC)	ABS	00.00

1


% #n:1~2

(7) Definition of relay operation time for each signal

Signal	Condition	Relay ON time
Tormination signal	In case of deleting the message by touching the screen after output creation and set relay maintaining time is elapsed,	Operation until the set operation time
Termination signal	In case of deleting the message by touching the screen during relay maintaining time after set output creation is made.	Operation until screen touch
Error signal/Sensor short signal/	In case of recovery after output creation and set relay maintaining time is elapsed.	Operation until error recovery
Standby signal	In case of recovery during relay maintaining time after set output creation is made.	Operation until set Holding Time


11-2. UP, SOAK, DOWN signal operation

- Input sensor = Temperature (k2), range = -200.0°C ~1370.0°C
- Up, down signal range \rightarrow [EUS 0% \sim EUS 10%] = [0.0°C \sim 157.0°C]

Setting

Up, Soak, Down operation depending on the set value

SVINUON

DI function and Operation

12–1 DI operation setting · · · · · · 121	
12-2 DI error name)
12–3 DI error creation screen · · · · · · · · · · · · · · · · · ·	1

DI function and Operation

► → Flow chart

[Fig. 12–1] DI function and Operation setting screen #1

[Fig. 12–10] DI function and Operation setting screen #4 (Channel 1)

DI ERROR	NAME	: MAIN
DII NAME	THE DII ERROR OCCURRED	
D12 NAME	THE DI2 ERROR OCCURRED	
DIS NAME	THE DIS ERROR OCCURRED	
DI4 NAME	THE DI4 ERROR OCCURRED	
DIS NAME	THE DIS ERROR OCCURRED	
DIG NAME	THE DIG ERROR OCCURRED	-
DI7 NAME	THE DIT ERROR OCCURRED	
DIS NAME	THE DIB ERPOR OCCURRED	-

Flow chart

[Fig. 12–7] DI function and operation setting screen #4 (Channel 1)

🎯 di co	NFIGUR	ATION					02.11 57 AM	
DI 1 OPE				OPERATION		:: N	IAIN	
@ERROR (P		OR @STEF		+	+	
				~8 OPERAT		CH1	CH2	
	ECT BY DI	_						6
PTN NO	D18	DI7	DI6	DIS	D14			
NAMELAL					0			
2					ŏ			
3				۲	۲			
							and the second	
29	0	0	۲		•		-	
30	•	•	•	•	0		-	1
31	•	•	•	•	•	🖸 🖸 SI	TUP	

[Fig. 12–2] DI function and operation setting screen #2 (Channel 1)

[Fig. 12–5] DI function and operation setting screen #3 (Channel 1)

[Fig. 12–7] DI function and operation setting screen #4 (Channel 1)

12. DI function and Operation

Explanation with CH1 CH2 corresponds to TEMP2*20 ONLY (TEMP2*00 series not support this setting)

12-1. DI Operation setting

(1) DI function and Operation setting screen 1

• It is a screen to set the DI function and Operation.

[Fig. 12–1] DI function and Operation setting screen 1 Image: DI CONFIGURATION Image: DI OPTION Image: DI OPTION Image: DI OPTION	0	Setting DI options • 16 : DI 16 points • 30 ~ 58 : DI30 ~ 58 points (Available when additional TIO2000–A is connected) Catting the same display problem in DI same among in a
	٢	 Setting the error display method in DI error creation TEXT: The error is displayed in letter in DI error creation PICTURE: The error is displayed with input photo in DI error creation The uploaded photo file into the internal memory is displayed into the DI error and basic photo is displayed when it is not uploaded.
BUZZER TIME KEEP TIME 00.01 M.S	3	Setting the buzzer ringing time in DI error creation • The buzzer ringing is made in DI error creation in spite of setting into "C • The buzzer ringing is not made when DI operation method is set in Run/Stop, Hold, Step and Pattern
5-	4	Moving from current screen to the next screen
📀 SETUP	5	Moving to the next or previous screen using the up/down button

Parameter	Setting range	Unit	Initial data
DI option	16, 30, 44, 58	ABS	16
Display method	TEXT, PICTURE	ABS	TEXT
Buzzer Holding Time	0.00 \sim 99.59(MIN.SEC)	ABS	00.01

SUMMON

(2) DI function and Operation setting screen 2

- It sets the operation method for each DI signal.
- 8 types of operations can be set for each channel and channel 1 sets DI1~DI8 and channel 2 sets DI9~DI16.

[Fig. 12–2] DI function and Operation setting screen 2 (Channel 1)						
🗑 di co	NFIGUR	ATION				22.02.11 09 57 AM
DII OPE		>		OPERATION		MAIN
	DI2 OPERATION GERROR OFFICIATION GERROR OFFICIATION GERROR OFFICIATION					
PTN SEL	ECT BY DI DI8	DI7	DIG	DI5	D14	
MANUAL					014	
MANUAL					0	
1					<u> </u>	
2				0		
				Ť	Ť	
29	0	•	0	0	•	
30	0	õ	0	0	ŏ	
31	õ	õ	õ	õ	ē	Ö SETUP
						SETUP

	Setting the DI1 operation method
	Error : Use the DI1 operation for error detection
1	Run/Stop : The operation is stopped at the time of releasing
	error while the operation is being made at the DI1 error creation
	Setting the DI2 operation method
\bigcirc	Error : Use the DI2 operation for error detection
(2)	Hold : It holds the current operation screen at the DI2 operation and the hold is
	released at the time of error releasing (It is possible in program operation only.)
	Setting the DI3 operation method
0	• Error : Use the DI3 operation for error detection
3	Step : Force moving from the current segment to the next segment at
	D/3 error creation (It is possible in program operation only,)
	Setting the DI4 operation method
\bigcirc	Error : Use the DI4 operation for error detection
(4)	Pattern : Force moving from the current segment to the next
	segment at DI3 error creation (It is possible in program operation only.)

References

It operates along DI1 when the DI1 operation method is set in "Run/Stop" in synchronized operation state, (The "Run/Stop" function by DI9 does not operate in synchronized operation state.)

DI CONFIGURATION							22.02.11 10 23 AM
		MAIN					
	ERROR @ RUN/STOP ERROR @ STEP JUI 10 OPERATION JUI 12-16 OPERATION						
	● EFROR ● HOLD ● EFROR ● PTN.						
PTN NO MANUAI	DI 16	DI 15	DI 14	DI 13	DI 12		
I I I					•		
2	٢	٢	0	۲	٢		
3	0	٢	۲	۲	•		
	0		0				-
<u>29</u> 30	0	0	0	<u> </u>	•		
31	•	•	•	0	õ	Ó	SETUP

[Fig. 12–3] DI function and operation setting screen 2 (Channel 2)

👰 di co	DI CONFIGURATION 22.02.11 09 57 AM						
	DI1 OPERATION ØEPROR @ RUN/STOP ØEPROR @ STEP						
	DI2 OPERATION C ERFOR C HOLD						
PTN SEL	ECT BY DI DI8	DI7	DI6	DI5	DI4		
MANUAL 1				• • •	•		
3				•	•		
29 30	0	0 0	0	0 0	0 0		
31	0	9	0	0	9	SETUP	

[Fig. 12-7] DI function and operation setting screen (1 Loop)

Parameter	meter Setting range		Initial data
DI1 Operation method	Error, Run/Stop	ABS	Error
DI2 Operation method	Error, Hold	ABS	Error
DI3 Operation method	Error, Step	ABS	Error
DI4~8 Operation method	Error, Pattern	ABS	Error
DI9 Operation method	Error, Run/Stop	ABS	Error
DI10 Operation method	Error, Hold	ABS	Error
DI11 Operation method	Error, Step	ABS	Error
DI12~16 Operation method	Error, Pattern	ABS	Error

► DI sensing pattern A- Contact point selection (Channel 1)

DI1	DI2	DI3	operation
Error	Hold	Step	
ON			Operation
OFF			Stop
	ON		Hold operation
	OFF		Hold release
		ON	Step operation

References

ON/OFF operation is opposite in case of selection of DI sensing type B-contact point.

Pattern No.	DI8	DI7	DI6	DI5	DI4	
Manual	OFF	OFF	OFF	OFF	OFF	
1	OFF	OFF	OFF	OFF	ON	- K
2	OFF	OFF	OFF	ON	OFF	Ē
3	OFF	OFF	OFF	ON	ON	
4	OFF	OFF	ON	OFF	OFF	
5	OFF	OFF	ON	OFF	ON	12
6	OFF	OFF	ON	ON	OFF	5
7	OFF	OFF	ON	ON	ON	
8	OFF	ON	OFF	OFF	OFF	
9	OFF	ON	OFF	OFF	ON	
10	OFF	ON	OFF	ON	OFF	
11	OFF	ON	OFF	ON	ON	
12	OFF	ON	ON	OFF	OFF	
13	OFF	ON	ON	OFF	ON	
14	OFF	ON	ON	ON	OFF	
15	OFF	ON	ON	ON	ON	
16	ON	OFF	OFF	OFF	OFF	
17	ON	OFF	OFF	OFF	ON	
18	ON	OFF	OFF	ON	OFF	
19	ON	OFF	OFF	ON	ON	
20	ON	OFF	ON	OFF	OFF	2
21	ON	OFF	ON	OFF	ON	⊵
22	ON	OFF	ON	ON	OFF	Ę
23	ON	OFF	ON	ON	ON	Ę.
24	ON	ON	OFF	OFF	OFF	function
25	ON	ON	OFF	OFF	ON	and
26	ON	ON	OFF	ON	OFF	d o
27	ON	ON	OFF	ON	ON	operation
28	ON	ON	ON	OFF	OFF	rat
29	ON	ON	ON	OFF	ON	<u></u>
30	ON	ON	ON	ON	OFF	
31	ON	ON	ON	ON	ON	

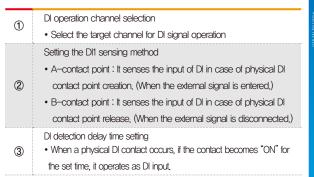
131

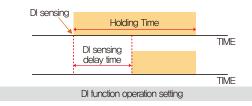
► DI sensing pattern B- Contact point selection (Channel 2)

DI9	DI10	DI11	operation
Error	Hold	Step	
OFF			Operation
ON			Stop
	OFF		Hold operation
	ON		Hold release
		OFF	Step operation

References

 ON/OFF operation is opposite in case of selection of DI sensing type A-contact point.


Pattern No.	DI16	DI15	DI14	DI13	DI12
Manual	ON	ON	ON	ON	ON
1	ON	ON	ON	ON	OFF
2	ON	ON	ON	OFF	ON
3	ON	ON	ON	OFF	OFF
4	ON	ON	OFF	ON	ON
5	ON	ON	OFF	ON	OFF
6	ON	ON	OFF	OFF	ON
7	ON	ON	OFF	OFF	OFF
8	ON	OFF	ON	ON	ON
9	ON	OFF	ON	ON	OFF
10	ON	OFF	ON	OFF	ON
11	ON	OFF	ON	OFF	OFF
12	ON	OFF	OFF	ON	ON
13	ON	OFF	OFF	ON	OFF
14	ON	OFF	OFF	OFF	ON
15	ON	OFF	OFF	OFF	OFF
16	OFF	ON	ON	ON	ON
17	OFF	ON	ON	ON	OFF
18	OFF	ON	ON	OFF	ON
19	OFF	ON	ON	OFF	OFF
20	OFF	ON	OFF	ON	ON
21	OFF	ON	OFF	ON	OFF
22	OFF	ON	OFF	OFF	ON
23	OFF	ON	OFF	OFF	OFF
24	OFF	OFF	ON	ON	ON
25	OFF	OFF	ON	ON	OFF
26	OFF	OFF	ON	OFF	ON
27	OFF	OFF	ON	OFF	OFF
28	OFF	OFF	OFF	ON	ON
29	OFF	OFF	OFF	ON	OFF
30	OFF	OFF	OFF	OFF	ON
31	OFF	OFF	OFF	OFF	OFF


SANKION

(3) DI function and Operation setting screen 3

- It sets the sensing method for each DI signal.
- 8 types of operations can be set for each channel and channel 1 sets D11~D18 and channel 2 sets D19~D116.
- Channel change is possible by selecting DI operation channel.

[Fig. 12-5] DI function and Operation	n setting screen 3 (Channel 1)	
DI CONFIGURATION		22.02.11 09:58 AM
DII SIGNAL	DI2 SIGNAL	** MAIN
3 DETECT TIME 00.01 M.S	DETECT TIME 00.01 M.S	← →
OPERATION ERR.STOP	OPERATION ERR.STOP	
DI3 SIGNAL	DI4 SIGNAL	
	DETECT TIME 00.01 M.S	
OPERATION ERR.STOP	OPERATION ERR.STOP	▼ ▲
		🙆 SETUP

[Fig. 12–7] DI function and operation setting screen 4 (Channel 1)						
DI CONFIGURATION		22.02.11 10:35 AM				
DI1 SIGNAL	DI2 SIGNAL	SE MAIN				
👆 GHI 🖕 A-TYPE	🗄 GH1 👘 A-TYPE					
DETECT TIME 00.01 M.S	DETECT TIME 00.01 M.S	+ +				
OPERATION ERR.STOP	OPERATION ERR.STOP					
ERR.STOP	TM.STOP					
DI3 SIGNAL ERR. RUN	RUN					
CHI CHI	A-TYPE					
DETECT TIME 00.01 M.S	DETECT TIME 00.01 M.S					
OPERATION ERR.STOP	OPERATION ERR.STOP	~				
		🔅 SETUP				

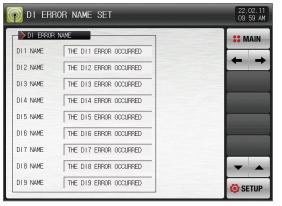
		Error stop	: It displays DI error screen in case of DI error
U		creation and stops operation.	
	0	Error operation	: It displays DI error screen in case of DI error
	0		creation and maintains the current operation state.
	0	Time stop	: It displays DI error screen in case of DI error creation
	9		and stops operation after the set delay time.
		Operation	: It displays DI error screen in case of DI error creation
	4)		and maintains the current operation state.

References

- It displays the operation state and Y/N for display in case of each DI error creation
- The error signal relay is not operated in case of each DI error creation when it is set in "Operation" and DI signal relay output is operated.
- The state display lamp and error signal are created in [Operation screen 2].

OI CONFIGURATION	22.02.11 11:00 AM
DI1 SIGNAL DI2 SIGNAL DI2 SIGNAL	SEMAIN
DETECT TIME 00.01 M.S DETECT TIME 00.01 M.S	← →
OPERATION ERR. STOP	
DI3 SIGNAL	
CH2 A-TYPE CH2 A A-TYPE	
DETECT TIME 00.01 M.S DETECT TIME 00.01 M.S	
OPERATION ERR.STOP	
	😟 SETUP

[Fig. 12–9] DI function and operation setting screen 4 (Channel 2)


Parameter	Setting range	Unit	Initial data
DI #n dctection	A-TYPE, B-TYPE	ABS	A-TYPE
DI #n signal delay time	0.00 \sim 99.59(MIN.SEC)	ABS	00.01
Operation after sensing DI #n signal	Error stop, Time stop, Error operation, Operation	ABS	Error stop

∦ #n = 1 ~ 58

12-2. DI error name

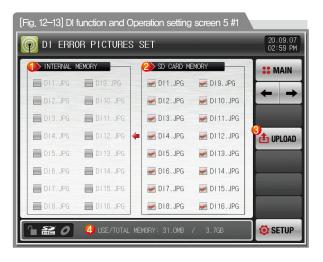
(1) DI error name setting

- The setting is available when the display method is "TEXT".
- It is a screen to input the DI error name.
- The DI error name can be put in 24 letters in maximum.

[Fig. 12-10] DI function and operation setting screen 5 #1

Image: Provide the set 22.02.11 Image: Provide the set 11.46 AM						
INTERNAL MEMORY	1	SD CARD ME	EMORY	SE MAIN		
DI1.JPG DI9.JPG		🛃 DI 1. JPG	🛃 DI9. JPG			
DI2.JPG DI10.JPG		🛃 D12. JPG	🛃 DI 10. JPG	+ +		
DI3.JPG DI11.JPG		🛃 DI 3. JPG	🛃 DI 11. JPG			
DI4.JPG DI12.JPG	4	🛃 DI4. JPG	🛃 DI 12. JPG	1 UPLOAD		
📕 DI5. JPG 🛛 📕 DI13. JPG		MDI5.JPG	🛃 DI 13. JPG			
DI6.JPG DI14.JPG		🛃 DI 6. JPG	🛃 DI 14. JPG			
DI7.JPG 📃 DI15.JPG		🛃 DI 7. JPG	🛃 DI 15. JPG			
📕 D18. JPG 🛛 📕 D116. JPG		🛃 DI8. JPG	🛃 DI 16. JPG			
	🧔 SETUP					

[Fig. 12–11] DI function and operation setting screen 5 #2


Parameter	Setting range	Unit	Initial data
DI #n name	0~9, A~Z, Special letters (24 letters in maximum)	ABS	THE DI#n ERROR OCCURRED

* #n = 1 \sim 56

SUMMON

(2) DI error creation photo setting

- The setting is available when the display method is "PICTURE".
- The uploaded photo file (JPG) into the internal memory is displayed in DI error and basic photo is displayed when it is not uploaded.
- The photo can be uploaded when there is a SD card option and refer to [13. User screen].

	The photo file corresponding of its name to DI out of the saved
1	photo files (JPG) into the memory is displayed and it is inactive
	(🔲) when there is not corresponding file.
	The photo file corresponding of its name to DI out of the saved
2	photo files (JPG) into the SD card is displayed.
	\bullet The file selected with (\fbox) is uploaded into the internal memory.
3	The photo files (JPG) saved into SD card is uploaded to internal memory.
4	It displays the capacity of current SD card.
	• It is displayed when the SD card is inserted.

🗑 DI ERROR PICTURES SET					
) INTERNAL I	MEMORY	1	→ SD CARD M	EMORY	SEMAIN
🔲 DI 1. JPG	🔲 D19. JPG		🛃 DI 1. JPG	M DI9. JPG	
🔲 D12. JPG	📕 DI 10. JPG		🛃 D12. JPG	🛃 DI 10. JPG	+ +
📕 D13. JPG	📕 DI 11. JPG		🛃 DI 3. JPG	🛃 DI 11. JPG	
📕 D14. JPG	📕 DI 12. JPG	-	🛃 DI4. JPG	MDI 12. JPG	📤 UPLOAD
📕 D15. JPG	📕 DI 13. JPG		🛃 D15. JPG	🛃 DI 13. JPG	
📕 D16. JPG	📕 DI 14. JPG		🛃 D16. JPG	🛃 DI 14. JPG	
📕 DI 7. JPG	📕 DI 15. JPG		🛃 D17. JPG	🛃 DI 15. JPG	
📕 D18. JPG	DI 16. JPG		🛃 D18. JPG	🛃 DI 16. JPG	
120	🙆 SETUP				

[Fig. 12-14] DI function and operation setting screen 5 #2

🗑 DI ERRC	R PICTURES	SET		20.09.07 02:59 PM
	EMORY	SD CARD M	EMORY	SEMAIN
DI1.JPG	D19.JPG	🛃 DI 1. JPG	M DI9. JPG	
D12.JPG	DI 10. JPG	🛃 D12. JPG	M DI 10. JPG	+ +
DI3. JPG	DI 11. JPG	MDI3. JPG	M DI 11. JPG	
DI4. JPG	🔲 DI 12. JPG 🔌	DI4. JPG	🛃 DI 12. JPG	1 UPLOAD
DI5.JPG	DI 13. JPG	🛃 DI 5. JPG	🛃 DI 13. JPG	
📕 DI 6. JPG	DI 14. JPG	🛃 DI 6. JPG	🛃 DI 14. JPG	
DI7. JPG	DI 15. JPG	🛃 DI 7. JPG	🛃 DI 15. JPG	
D18. JPG	📕 DI 16. JPG	🛃 DI8. JPG	🛃 DI 16. JPG	
120	ALL PIC	TURES BECAME U	PLOAD	🞯 SETUP

References

- In case of file management for SD card, it recognizes when the folder name shall be JPG, and file name shall be DI*JPG.
- The message, "It is uploaded now." is displayed at the bottom of screen during upload.
- JPG files can be used from Ver.5, and versions prior to Ver.5 must be used as BMP files. For more information, refer to [13-2, JPG & BMP file making method]

References

- When the upload is completed, the message, "The upload is completed." is displayed.
- ▶ The photo files() are activated for selection at the internal memory when the upload is completed.

[Fig. 12–15] DI function and operation setting screen 5 #3

🗑 DT ERRO	OR PICTURE	s s	SET		20.09.07 02:59 PM
	IEMORY	1 1	SD CARD M	EMORY	SEMAIN
📄 DI 1. JPG	D19. JPG		🛃 DI 1. JPG	M DI 9. JPG	
D12.JPG	🛃 DI 10. JPG		🛃 DI 2. JPG	🛃 DI 10. JPG	+ +
DI3.JPG	🛃 DI 11. JPG		🛃 DI 3. JPG	🛃 DI 11. JPG	
🛃 DI4.JPG	📕 DI 12. JPG	-	🛃 DI4. JPG	🛃 DI 12. JPG	1 UPLOAD
🛃 DI5.JPG	📕 DI 13. JPG		🛃 DI5. JPG	🛃 DI 13. JPG	
DI6. JPG	🛃 DI 14. JPG		🛃 DIG. JPG	🛃 DI 14. JPG	
🛃 DI7. JPG	🛃 DI 15. JPG		🛃 DI7. JPG	🛃 DI 15. JPG	
D18.JPG	🔲 DI 16. JPG		🛃 DI8. JPG	🛃 DI 16. JPG	
120	USE/TOTAL	. MEI	MORY: 31.0MB	/ 3.7GB	🙆 SETUP

[Fig. 12–16] DI function and operation setting screen 5 #4

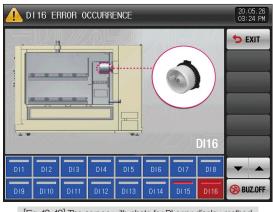
E References

- ▶ When the wanted file is selected() when the wanted file is selected() when the used for screen in case of DI error creation.
- ► The basic photo inside the memory is displayed when the error is made from the unselected DI.

SVINDION

12-3. DI error creation screen

- It is a screen in case of DI error creation.
- It is converted to the operation screen after escaping from the DI error screen when 5 EXIT is touched by user.


• The same DI error creation is neglected for 1 minute when the screen is changed by pressing 5 EXIT button after DI creation.

Ex) When it is exit with "EXIT" in creation of D11, neglect it for 1 minute in spite of D11 creation, It displays DI error screen when D11 is created after 1 minute,

- Here, the neglecting means the DI error screen.
- Buzoff button is to block the alarming sound when DI error is occurred. •
- DI error no creation ("OFF" state) (1 photo) • DI error creation ("ON" state) (Content of the DIT ERROR OCCURRED letter, Content of the DIT ERROR OCCURRED let
- Release after DI error creation ("OFF" state after "ON") (

[Fig. 12-17] The screen with letter for DI error display method

[Fig. 12-18] The screen with photo for DI error display method

User screen

13-1 User screen setting · · · · · 1	37
13-2 JPG & BMP file making method · · · · · · 1	40
13–3 Operation of user screen ······1	43

User screen flow chart

VIEW OPERATION	** MAIN
> ROTATE TIME	← →
START TIME 00.05 M.S	
INTERVAL TIME 00.05 M.S	

[Fig. 13–1] User screen setting screen 1

> INTERNAL	MEMORY	SD CARD M	MORY	SE MAIN
CS1.JPG	CS9. JPG	🛃 CS1. JPG	🛃 CS9. JPG	
CS2. JPG	CS 10. JPG	🛃 CS2. JPG	👿 CS 10. JPG	+ -
CS3. JPG	CS11.JPG	🛃 CS3. JPG	CS11.JPG	
CS4. JPG	CS12.JPG	🗧 👿 CS4. JPG	CS12.JPG	t UPLO/
CS5. JPG	CS13.JPG	🛃 CS5. JPG	🛃 CS13. JPG	
CS6. JPG	CS14.JPG	🛃 CS6. JPG	CS14.JPG	
CS7. JPG	CS15.JPG	🛃 CS7. JPG	🛃 CS15. JPG	
CS8. JPG	CS16. JPG	👿 CS8. JPG	👿 CS16. JPG	

[Fig. 13–2] User screen #1 setting screen 2

13. User screen

The screen is displayed when only SD card option is selected by user

13-1. User screen setting

(1) User screen setting 1

- It is a screen to set the user screen operation.
- It has an electronic album function which displays maximum 16 photos on the operation screen in turn,
- It can be used for company promotion and equipment explanation.

[Fig. 13–1] User screen setting screen 1	
PICTURES VIEW SET	20.09.07 03:00 PM
2 START TIME 00.05 M.S 3 INTERVAL TIME 00.05 M.S	
	🐼 SETUP

	Setting Y/N for using the user screen
1	 User screen operation is "ON" when more than one selected
	photo file stays into the internal memory.
	Setting the user screen operation time
(2)	• The operation is started when there is no key input during set time.
0	Setting the user screen conversion time
9	• The saved pictures are switched by set time cycle.
4	Moving from current screen to the next screen

Parameter		Setting range	Unit	Initial data
User screen display		Unuse, Use	ABS	Unuse
Operation	Starting time	0.05 \sim 99.59(MIN.SEC)	ABS	00.05
time setting	Screen conversion time	0.01 \sim 99,59(MIN.SEC)	ABS	00.05

S

(2) User screen setting screen 2

- It is a screen to display the photo file (JPG) saved into SD card.
- When there are no files in SD card, the selection and upload are not available as they are inactive.

[Fig. 13–2] User screen selection #1 in screen 2						
💽 СИЗТОМ	CUSTOMER PICTURES SET 20.09.07 03.00 PM					
1 INTERNAL	MEMORY	1	🕗 SD CARD M	EMORY	SEMAIN	
CS1.JPG	CS9. JPG		🛃 CS1. JPG	🛃 CS9. JPG		
CS2.JPG	CS10. JPG		🛃 CS2. JPG	🛃 CS10. JPG	+ +	
CS3. JPG	CS11.JPG		🛃 CS3. JPG	🛃 CS11. JPG		
CS4. JPG	CS12.JPG	4	🛃 CS4. JPG	🛃 CS12. JPG	UPLOAD	
CS5.JPG	CS13. JPG		🛃 CS5. JPG	🛃 CS13. JPG		
CS6. JPG	CS14.JPG		M CS6. JPG	🛃 CS14. JPG		
CS7.JPG	CS15.JPG		🛃 CS7. JPG	🛃 CS15. JPG		
CS8. JPG	CS16.JPG		🛃 CS8. JPG	🛃 CS16. JPG		
4 2 0	USE/TOTAL	ME	MORY: 32.2MB	/ 3.7GB	🙋 SETUP	

The photo file corresponding of its name to CS out of the saved

photo files (JPG) into the memory is displayed and it is inactive

(🔄) when there is no corresponding file.

The photo file corresponding of its name to CS out of the saved photo

(2) files (JPG) into the SD card is displayed.

(4)

- The file selected with ($\begin{array}{c}$) is uploaded into the internal memory.
- ③ The photo files (JPG) saved into SD card is uploaded to internal memory.

It displays the capacity of current SD card.

• It is displayed when the SD card is inserted.

💽 СИЗТОМЕ	R PICTURES	S SET		20.09.07 03.00 PM
	EMORY	SD CARD M	EMORY	SEMAIN
CS1.JPG	CS9.JPG	CS1.JPG	MCS9. JPG	
CS2. JPG	CS10. JPG	🛃 CS2. JPG	🖌 CS10. JPG	
CS3. JPG	CS11. JPG	🛃 CS3. JPG	🖌 CS11. JPG	
CS4, JPG	CS12.JPG	🗲 🛃 CS4. JPG	🖌 CS12. JPG	
CS5. JPG	CS13. JPG	🛃 CS5. JPG	🛃 CS13. JPG	
CS6. JPG	CS14. JPG	🛃 CS6. JPG	🖌 CS14. JPG	
CS7. JPG	CS15. JPG	🛃 CS7. JPG	🛃 CS15. JPG	
CS8. JPG	CS16. JPG	🛃 CS8. JPG	🛃 CS16. JPG	
120	🙆 SETUP			

[Fig. 13-3] User screen selection #2 in screen 2

References

- In case of file management for SD card, it recognizes when the folder name shall be JPG, and file name shall be DI*, JPG.
- The message, "It is uploaded now." is displayed at the bottom of screen during upload.
- JPG files can be used from Ver,5, and versions prior to Ver,5 must be used as BMP files, For more information, refer to [13–2, JPG & BMP file making method]

144

🔛 СИЗТОМІ	ER PICTURES	SET		20.09.07 03.00 PM
	MEMORY	SD CARD M	EMORY	# MAIN
CS1.JPG	CS9.JPG	CS1.JPG	CS9. JPG	
CS2. JPG	CS10. JPG	🛃 CS2. JPG	🖌 CS10. JPG	+ +
CS3. JPG	CS11.JPG	CS3. JPG	🖌 CS11. JPG	
CS4. JPG	CS12.JPG	CS4. JPG	🛃 CS12. JPG	1 UPLOAD
CS5. JPG	CS13. JPG	🛃 CS5. JPG	🛃 CS13. JPG	
CS6. JPG	CS14. JPG	🛃 CS6. JPG	🛃 CS14. JPG	
CS7. JPG	CS15. JPG	🛃 CS7. JPG	🛃 CS15. JPG	
CS8. JPG	CS16. JPG	🛃 CS8. JPG	🖌 CS16. JPG	
120	🔅 SETUP			

[Fig. 13–4] User screen selection #3 in screen 2

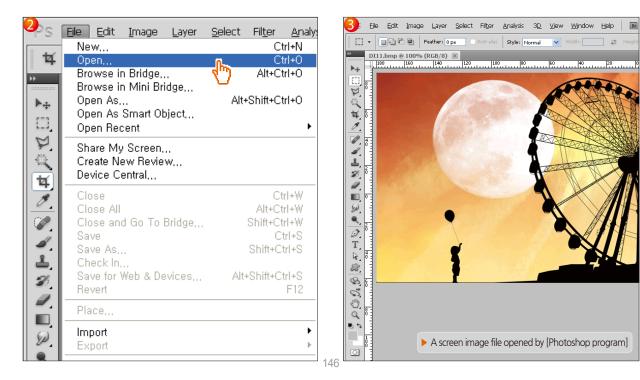
References

- When the upload is completed, the message, "The upload is completed," is displayed.
- The photo files () are activated for selection at the internal memory when the upload is completed.

20.09.07 03.00 PM 🛃 CUSTOMER PICTURES SET > INTERNAL MEMORY SD CARD MEMORY **MAIN** CS1.JPG CS9. JPG CS1.JPG CS9. JPG CS10. JPG CS10. JPG CS2. JPG CS2. JPG CS3. JPG CS11.JPG CS3. JPG CS11. JPG CS12.JPG 👍 🖌 CS4. JPG CS12. JPG 🖌 CS4. JPG rt UPLOAD CS13. JPG CS5. JPG CS13. JPG CS5. JPG CS6. JPG CS14.JPG CS6. JPG CS14. JPG CS15. JPG CS7.JPG CS15.JPG CS7. JPG CS16. JPG CS8. JPG CS16.JPG CS8.JPG SETUP 80

[Fig. 13-5] User screen selection #4 in screen 2

References


When the files () needed from the internal memory is selected, it can be used for user screen in operation of user screen SANKION

13-2. JPG & BMP file making method

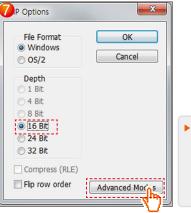
- JPG files can be used from Ver.5, and versions prior to Ver.5 must be used as BMP files
- JPG / BMP files can be created BitEditor or Adobe Photoshop.(JPG can be saved as paint.)

BitEditor can be downloaded from our website, please refer to BitEditor manual. How to create it in Adobe Photoshop is as follows.

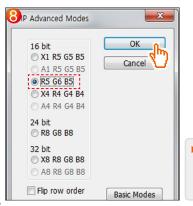
🕨 📴 Adobe Photoshop

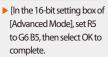
4. Eile Edit	Image Layer Select Filter Analysis 3D View Window He
▶⊕ + □ Auto-Se	- Mode → Adjustments →
DI11.bmp @ 180 180	
₩ # # A.	Image Size Alt+Ctrl+ Canvas Size Alt+Ctrl+C Image Rotation Crop Trim Reveal All
	Duplicate Apply Image Calculations
2 2	Variables Apply Data Set,
	Тгар

5 age Size				×
Pixel Dime	nsions: 900.0	IK (was 8.30	M)	OK III
<u>W</u> idth:	640	pixels 👻]	Cance,
<u>H</u> eight:	480	pixels 🔻		<u>Auto</u>
Documen	t Size: ——			
Wi <u>d</u> th:	22.58	cm	•	
Height:	16.93	cm	•	
Resolution:	72	pixels/inch	•	
Scale Style	s			
Constrain F	Proportions			


(1) Create JPG file

Save As			
저장 위치(!):	퉬 JPG	- 🕝 🎓 🔛 -	
최근 위치	E DI1.jpg DI2.jpg		
바탕 화면			
() 라이브러리			
[▲] 컴퓨터			
(LE) 네트워크	파일 이름(<u>N</u>): <u>F</u> ormat:	D12.jpg v JPEG (*,JPG;*,JPEG;*,JPE) v	
	Save Options 저장:	☑ 사본으로(Y) □ 비모(N) □ 알파 채널(E) □ 별색(P) □ 레디(M + 1) □	


7 EG Options	×
Matte: None Image Options Quality: 10 Maximum small file large file	OK Canc
Format Options Baseline ("Standard") Baseline Optimized Progressive Scans: 3 •	


(2) Create BMP file

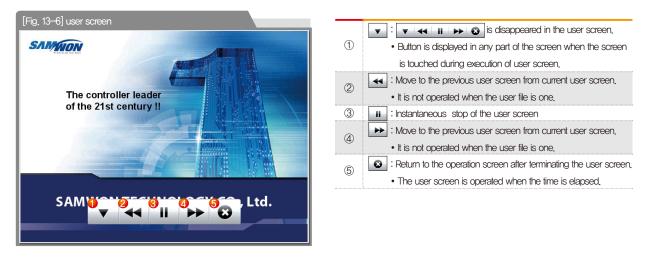
6 ave As					×
저장 위치(!):	BMP		•	G 🤌 📂 🖽	-
최근 위치	🛃 DI1.bmp 🛃 DI2.bmp				
바탕 화면					
() 라이브러리					
(美) 컴퓨터					
네트워크	파일 이름(<u>N</u>): <u>F</u> ormat:	DI2.bmp BMP (*,BMP;*,R	LE;+,DIB)	•	제장(<u>S</u>) 취실 도 메이
	Save Options 저장:	✓ 사본으로(Y) ○ 알파 채널(E)	□ 메모(<u>N</u>) □ 별색(<u>P</u>)		U

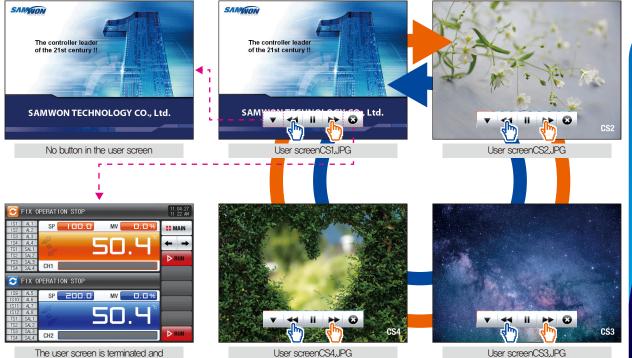
After saving the file extension as "BMP", if the BMP option active window appears, set it to 16-bit and then select [Advanced Mode].

Division	DI error screen	User screen	Initial screen
JPG resolution	528 X 304 pixels (within 360K)	640 X 480 pixels (within 360K)	
BMP resolution	520 X 422 pixels	640 X 480 pixels	
File name DI#n.JPG / DI#n.BMP		CS#nJPG/CS#n.BMP	INITJPG/INIT.BMP
Number of files	16	16	1

#n:1~16

References


> When the files are saved in different name with the defined one in the DI error screen, they cannot be used.


- > The folder name inside the SD card is defined in BMP or JPG.
- ▶ When creating a BMP file, it is recommended to use [Photoshop program].

▶ When saving BMP files, "Paint", which is commonly used in computers, cannot be used because bitmaps cannot be saved in 16BIT.

13-3. Operation of user screen

- Refer to [Fig. 13-1] User screen setting screen #1.
- 16 photos can be used for user screen.
- It operates when there is no key input during set time in case of using the user screen.

13. User screen

SVINKION

return to the operation screen

Part **1 4**

System initial setting

14–1 Basic screen display setting · · · · · · · · · · · · · · · · · · ·	147
14–2 State display lamp setting ·····	149

System initial setting flow chart

夫 🗲 🗕 Flow chart

TEXT PICTURE PASSINGO ***** USSER LCO CPTICH 00 CPTICH UNSE USE 32 40 48 56	-
● UNUSE @ USE	-
INUT INCOMMETICAL	
INFORMATION1 SAMMONTECHNOLOGY CO., LTD.	NIT
INFORMATION2 TEL: 82-32-326-9120	
INFORMATION3 HTTP://WWH.SAMHONTECH.COM	

[Fig. 14–1] The screen adopted the letter for display method

[Fig. 14-5] System initial setting screen 2 (Channel 1)

14. System initial setting

The setting with "Photo" is available only in SD card option.


14-1. Basic screen display setting

Fig. 14–1] The screen adopted the letter for display method				
🚽 INITIAL DI	SPLAY	21.12.30 11.29 AM		
TEXT PICTUR	E PASSWORD ****	:: MAIN		
2 USER KEY UNUSE () USE	5 DO OPTION			
INIT INFORMATIC	N SAMHONTECHNOLOGY CO., LTD.			
INFORMATION2	TEL: 82-32-326-9120 HTTP://WWW.SAMWONTECH.COM			
		🙆 SETUP		

1	Setting the display on the initial screen with electric power ON					
2	Setting Y/N of user button in stationary and program operation screen					
3	Display the wording on the initial screen with electric power ON • Setting 1, 2, 3 wording for information is available and maximum 24 characteristics can be input • Display method is set with letter.					
4	Setting the password used in system screen entering • The password was set in "0" when it is delivered from the factory.					

14. System initial setting

20.09.07 INITIAL DISPLAY 03:01 PM DISPLAY METHOD SYSTEM PASSWORD : MAIN TEXT PICTURE PASSWORD **** >USER KEY UNUSE USE UPLOAD > INTERNAL MEMORY SD CARD MEMORY BASE INIT. JPG INIT. JPG 艮 INIT 4

Selection of the photo displayed on the initial screen in electric power ON (1) • BASE: Display the basic photo inside the internal memory. Display of Y/N for the INIT.JPG file saved in SD card • The photo file corresponding of its name to INIT.JPG out of the saved photo files (JPG) into the memory is displayed and it is (2) inactive () when there is not corresponding file. • The folder name is set in JPG, and file name in DI*JPG in file management of SD card. 3 Upload the INIT, JPG file inside the SD card into the internal memory

USE/TOTAL MEMORY: 33.4MB /

References

▶ JPG files can be used from Ver.5. and versions prior to Ver.5 must be used as BMP files. For more information. refer to [13-2, JPG & BMP file making method]

SETUP

[Fig. 14-3] The screen adopted the photo for display method

22 O

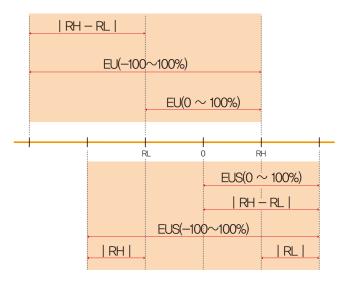
Parameter Display method System password setting User button DO option		Setting range	Unit	Initial data		
		TEXT, PICTURE	ABS	TEXT		
		0~9999	ABS	0		
		Unuse, Use	ABS	Unuse		
		32, 40. 48, 56	ABS	32		
	Information display 1	0~9, A~Z, Special character (Maximum 24 characters)	ABS	SAMWONTECHNOLOGY CO., LTD.		
Initial screen information	Information display 2	0~9 A~Z, Special character (Maximum 24 characters)	ABS	TEL:82-32-326-9120		
internation	Information display 3	0~9 A~Z, Special character (Maximum 24 characters)	ABS	http://www.samwontech.com		

14-2. State display lamp setting

- It is a screen to set the type of lamps to be display in the stationary and program operation screen #2.
- Maximum 20 lamps can be selected.

¥- •-	🗙 STAT	IUS DI	SPLAY	LAMP						02.11 02 PM
ſ	LAMP	SELECT(20))						:: M	IAIN
	MIS1	🖌 IS2	M 183	🛃 IS4	M 185	🛩 IS6	IS7		+	→
	821	IS9	📕 IS10	IS11	🔲 IS12	📕 IS13	🔲 IS14		CH1	CH2
	📕 IS15	📕 IS16	🛃 TS1	MTS2	M TS3	🛃 TS4	TS5		UIII	UIIZ
	TS6	TS7	TS8	🛃 AL 1	🛃 AL 2	🛃 AL 3	MAL4			
	🛃 AL5	🛃 AL 6	AL7	AL8	SAL 1	SAL 2	SAL 3	Lange I		
	SAL4	■ T1	📕 T2	Т3	🔲 T4	📰 T5	Т6			
	T7	MRUN	IREF	2REF	SD SD	🛃 LOG1	₩L0G2		-	
									🧿 SE	TUP

[Fig. 14-5] System initial setting screen 2 (Channel 2)


[Fig. 14-6] System initial setting screen 2 (Channel 1)

Engineering Units - EU, EUS

:..... When the sensor type (IN-T) or the upper limit, lower limit of input range is changed, the parameters expressed in EU(), EUS() are changed in

proportion to current data. (However, the upper and lower range setting data is initialized.)

- :.... Download the instruction manual and communication manual from the homepage.
- :.... EU() : Value of engineering unit depending on the range of instrument
 - EUS(): Value of engineering unit depending on the span of instrument

▶ Range of EU() and EUS()

	Range	Center point
EU(0 \sim 100%)	$\rm RL \sim \rm RH$	RH – RL /2 + RL
EU(-100 \sim 100%)	–(RH – RL + RL) \sim RH	RL
EUS(0 \sim 100%)	0 ~ RH - RL	RH – RL /2
EUS(-100 \sim 100%)	$-$ RH $-$ RL \sim RH $-$ RL	0

(Example)

► INPUT = T/C(K2)

▶ RANGE = -200.0°C(RL) ~ 1370.0°C(RH)

	Range	Center point				
EU(0 \sim 100%)	$-200.0 \sim 1370.0^{\circ}{ m C}$	585.0°C				
EU(100 \sim 100%)	$-$ 1770.0 \sim 1370.0 $^{\circ}\mathrm{C}$	- 200.0°C				
EUS(0 \sim 100%)	0 ∼ 1570.0°C	785.0°C				
EUS(-100 \sim 100%)	$-$ 1570.0 \sim 1570.0 $^{\circ}\mathrm{C}$	0.0°C				

RL: Lower limit of input range RL: Upper limit of input range

Queries related with after sales service for TEMP2000 series

Please inform the TEMP2000 model name, failure condition and contact point for queries of after sales service.

T : 82-32-326-9120 F : 82-32-326-9119

Customer contact for TEMP2000 series

Quotation request / Product request

Specification request / Data request/ Other request

- Internet www.samwontech.com
- E mail

webmaster@samwontech.com sales@samwontech.com

SAMWON TECHNOLOGY CO, LTD. (420-733) 202-703 Bucheon Techno-Park, #192 Yakdae-Dong, Wonmi-Gu, Bucheon-City, Gyeonggi-Do, Korea **T** +82-32-326-9120 **F** +82-32-326-9119 **E** webmaster@samwontech.com

5th Edition of TEMP2000 Series IM : JUNE. 10. 2022

